Abstract:
A display device includes a substrate including a first display area; a peripheral area; and a second display area disposed between the first display area and the peripheral area; a first light-emitting device disposed on the first display area of the substrate; a second light-emitting device disposed on the second display area of the substrate; a driving circuit disposed on the second display area and the peripheral area of the substrate and overlapping the second light-emitting device in a plan view; a pattern portion disposed on the driving circuit; and a dam disposed on an outside of the pattern portion.
Abstract:
A display device includes a flexible substrate, a display element unit disposed on a first surface of the flexible substrate and including a thin-film transistor (TFT) and an organic light-emitting element coupled to the TFT, and a protective layer comprising an organic material and disposed directly on a second surface of the flexible substrate, the second surface being opposite to the first surface. Impact resistance of the display device can be strengthened by lowering of the neutral plane through the use of the protective layer.
Abstract:
A display device including a substrate including a display area for displaying an image and a non-display area provided on a side of the display area and including a bending area bent with respect to an axis parallel to a first direction; a plurality of step portions disposed in the bending area and extending in the first direction; a plurality of bridge electrodes extending in a second direction crossing the first direction in the bending area; and a plurality of pattern portions disposed in the bending area. The step portions are spaced apart from each other, and the pattern portions are disposed between adjacent step portions. The pattern portions are lower than the step portions, and an acute angle of sides of each of the pattern portions from the substrate is smaller than an acute angle of sides of each of the step portions from the substrate.
Abstract:
Disclosed are a display device and a method for manufacturing the same. The display device according to an embodiment includes a transistor that is disposed on a substrate, a first electrode that is disposed on the substrate, a pixel defining layer that is disposed on the first electrode, a separator pattern that is disposed on the pixel defining layer, auxiliary wiring that is disposed between the pixel defining layer and the separator pattern, a second electrode that is disposed on the first electrode, the pixel defining layer, and the separator pattern, connection wiring that connects the transistor to the second electrode, and an intermediate layer that is disposed between the first electrode and the second electrode. A portion of the second electrode disposed on the separator pattern and a portion of the second electrode disposed around the separator pattern are separated from each other.
Abstract:
A display device includes a supporting substrate including a polymeric material, base substrate disposed on an upper surface of the supporting substrate, a pixel array disposed in a display area of the base substrate, a transfer wiring disposed in a bending area of the base substrate and electrically connected to the pixel array, and an organic filling portion disposed under the transfer wiring in the bending area. The base substrate includes an organic film including a polymeric material, and an inorganic barrier film overlapping the organic film and extending outwardly from an edge of the organic film. The organic filling portion contacts the organic film of the base substrate.
Abstract:
A manufacturing method of a display device includes: forming a flexible substrate on a sacrificial substrate; forming a display element unit on a first surface of the flexible substrate, the display element unit including a TFT and an organic light-emitting element; separating the sacrificial substrate from the flexible substrate; and forming a protective layer by depositing an organic material on a second surface of the flexible substrate, the second surface being opposite to the first surface.
Abstract:
An emissive display device includes: a substrate; a transistor disposed on the substrate; an insulating layer disposed on the transistor; a connection electrode disposed on the insulating layer and electrically connected to the transistor; a first electrode of a light emitting element disposed on the insulating layer; a separation pattern layer including a first pattern layer disposed on the connection electrode and a second pattern layer disposed on the insulating layer; a pixel defining layer disposed on the insulating layer and the separation pattern layer and including an opening overlapping the connection electrode; and a second electrode of the light emitting element disposed on the pixel defining layer and connected to the connection electrode through the opening of the pixel defining layer.
Abstract:
A display device includes a substrate including a first display area and a second display area; a first pixel circuit part disposed on the first display area of the substrate; a first light-emitting device connected to the first pixel circuit part; a second pixel circuit part disposed on the second display area of the substrate; a second light-emitting device connected to the second pixel circuit part; and a signal transfer wire that overlaps the second light-emitting device. The signal transfer wire includes subwires spaced apart from each other, and a bridge wire extending from the subwires.
Abstract:
In an aspect, a flexible substrate may include a base substrate, an insulating layer positioned on a first surface of the base substrate, a protective film positioned on a second surface facing the first surface of the base substrate and an adhesive layer positioned between the base substrate and the protective film and attaching the protective film on the second surface of the base substrate. The adhesive layer may include a cross-linker.
Abstract:
A light emitting display device includes a first display area; and a second display area disposed adjacent to the first display area, wherein the second display area includes a pixel driving part, a main light-emitting element directly connected to the pixel driving part, and an additional light-emitting element connected to the main light-emitting element, the additional light-emitting element overlaps a peripheral driving part in a plan view, the peripheral driving part generates a signal provided to the pixel driving part, the main light-emitting element and the additional light-emitting element each include a first electrode, an emission layer, and a second electrode, the pixel driving part is electrically connected to the second electrode of the main light-emitting element and the second electrode of the additional light-emitting element, and the second electrode of the additional light-emitting element and the second electrode of the main light-emitting element are separated by a separator.