Abstract:
A backplane for a display device and the display device are disclosed. In one aspect, the backplane includes a substrate, an active layer formed over the substrate including a channel region, a source region contacting a first side of the channel region, and a drain region contacting a second side of the channel region. The backplane further includes a gate electrode formed adjacent to the channel region, a source electrode electrically connected to the source region, and a drain electrode electrically connected to the drain region. The active layer includes a plurality of heat radiation pins that extend in a direction of the thickness of the active layer.
Abstract:
A pixel includes an organic light emitting diode (OLED), a first transistor, a first capacitor, a second capacitor, and a pixel circuit. The OLED includes a cathode electrode connected to a second power source. The first transistor is connected between a data line and a first node, and turns on when a scan signal is supplied to a scan line. The first capacitor is connected between the first node and a third power source. The second capacitor is connected between the first node and a fourth power source. The pixel circuit controls a current quantity flowing from a first power source to the second power source through the OLED based on a voltage of the first node.
Abstract:
A laser crystallization system is disclosed. In one embodiment, the laser crystallization system includes i) a mother substrate including first, second, and third display regions sequentially arranged in a first direction and ii) a stage for supporting the mother substrate and moving in the first direction and in a second direction. The system also includes i) a first laser irradiation unit for irradiating a first laser beam having a width greater than or identical to a width of a side of one of the display regions in the first direction and ii) a second laser irradiation unit spaced apart from the first laser irradiation unit and irradiating a second laser beam having a width greater than or identical to the width of the side in the first direction. Furthermore, the first and second laser beams may correspond to widths of sides of the first and third display regions.
Abstract:
An organic light emitting diode display includes a substrate; a gate wire on the substrate; an interlayer insulating layer covering the gate wire; a data wire on the interlayer insulating layer; a passivation layer on the data wire and the interlayer insulating layer and having a protection opening; a pixel electrode on a first wiring portion of the data wire exposed through the protection opening and the interlayer insulating layer; a pixel definition layer on the passivation layer and having a pixel opening exposing the pixel electrode; an organic emission layer covering the pixel electrode; and a common electrode covering the organic emission layer and the pixel definition layer, wherein the pixel electrode contacting the first wiring portion of the data wire and the interlayer insulating layer has protrusions and depressions.
Abstract:
The present invention provides a display device and a method of driving the same. The display device includes: a light-emitting device; a first capacitor connected between a first contact point and a second contact point; a driving transistor including an input terminal connected to a first voltage, an output terminal, and a control terminal connected to the second contact point; a first switching transistor controlled by a first control signal and connected between a data voltage and the first contact point; a second switching transistor controlled by a second control signal and connected between a second voltage and the first contact point; a third switching transistor controlled by a third control signal and connected between the second contact point and the second voltage; a fourth switching transistor controlled by the first control signal and connected between the second contact point and the output terminal of the driving transistor; and a fifth switching transistor controlled by the second control signal and connected between the light-emitting device and the output terminal of the driving transistor.
Abstract:
A laser crystallization system is disclosed. In one embodiment, the laser crystallization system includes i) a mother substrate including first, second, and third display regions sequentially arranged in a first direction and ii) a stage for supporting the mother substrate and moving in the first direction and in a second direction. The system also includes i) a first laser irradiation unit for irradiating a first laser beam having a width greater than or identical to a width of a side of one of the display regions in the first direction and ii) a second laser irradiation unit spaced apart from the first laser irradiation unit and irradiating a second laser beam having a width greater than or identical to the width of the side in the first direction. Furthermore, the first and second laser beams may correspond to widths of sides of the first and third display regions.
Abstract:
A transparent organic light emitting display apparatus include a base substrate, a light blocking pattern disposed on the base substrate, a thin film transistor disposed on the base substrate, a first electrode disposed on the base substrate and electrically connected to the thin film transistor, a pixel defining layer disposed on the base substrate and overlapping the first light blocking pattern, a second electrode disposed on the base substrate, a light emitting structure disposed between the first electrode and the second electrode, and a second light blocking pattern overlapping the first light blocking pattern. The first light blocking pattern defines a first opening. The second light blocking pattern defines a second opening which overlaps the first opening. The pixel defining layer defines a third opening which overlaps the first and second openings configured to pass external light through the first to third openings.
Abstract:
A backplane for a display device and the display device are disclosed. In one aspect, the backplane includes a substrate, an active layer formed over the substrate including a channel region, a source region contacting a first side of the channel region, and a drain region contacting a second side of the channel region. The backplane further includes a gate electrode formed adjacent to the channel region, a source electrode electrically connected to the source region, and a drain electrode electrically connected to the drain region. The active layer includes a plurality of heat radiation pins that extend in a direction of the thickness of the active layer.
Abstract:
An organic light emitting display device includes: a substrate; a thin film transistor (TFT) on the substrate and including an active layer, a gate electrode, a source electrode, and a drain electrode; an organic light emitting device including a pixel electrode that contacts at least one of the source electrode or the drain electrode of the TFT, an interlayer including a light emitting layer, and a counter electrode facing the pixel electrode, the pixel electrode, the interlayer, and the counter electrode being stacked; and a cathode contact part including a first contact layer and a second contact layer, the first contact layer being at a same layer as the active layer and being doped with ion impurities, the second contact layer including a same material as the source electrode and the drain electrode and coupling the first contact layer and the counter electrode to each other.
Abstract:
An organic light emitting diode display includes a substrate; a gate wire on the substrate; an interlayer insulating layer covering the gate wire; a data wire on the interlayer insulating layer; a passivation layer on the data wire and the interlayer insulating layer and having a protection opening; a pixel electrode on a first wiring portion of the data wire exposed through the protection opening and the interlayer insulating layer; a pixel definition layer on the passivation layer and having a pixel opening exposing the pixel electrode; an organic emission layer covering the pixel electrode; and a common electrode covering the organic emission layer and the pixel definition layer, wherein the pixel electrode contacting the first wiring portion of the data wire and the interlayer insulating layer has protrusions and depressions.