Abstract:
A pixel circuit and an OLED display including the same are disclosed. The pixel circuit includes a driving transistor having a double gate structure, the driving transistor including a first gate electrode electrically connected to a first node, a second gate electrode electrically connected to a second node, a first electrode electrically connected to a first power supply voltage, and a second electrode electrically connected to the anode of the OLED. The pixel circuit also includes a switching transistor including a gate electrode configured to receive a scan signal, a first electrode configured to receive a data voltage, and a second electrode electrically connected to the first node. The pixel circuit further includes a storage capacitor and a compensation capacitor including a first electrode electrically connected to the second node and a second electrode electrically connected to the first electrode of the driving transistor.
Abstract:
A thin film transistor (TFT) includes a gate electrode disposed on a substrate. An oxide semiconductor layer is disposed on the gate electrode. An insulation layer is disposed on the oxide semiconductor layer. The insulation layer includes a first contact hole that exposes a first part of the oxide semiconductor layer corresponding to a first end of the gate electrode and a second contact hole that exposes a second part of the oxide semiconductor layer corresponding to an opposite end of the gate electrode. A source electrode is disposed on the insulation layer and contacts the first part of the oxide semiconductor layer through the first contact hole. A drain electrode is disposed on the insulation layer and contacts the second part of the oxide semiconductor layer through the second contact hole.
Abstract:
A thin film transistor (TFT) includes a gate electrode disposed on a substrate. An oxide semiconductor layer is disposed on the gate electrode. An insulation layer is disposed on the oxide semiconductor layer. The insulation layer includes a first contact hole that exposes a first part of the oxide semiconductor layer corresponding to a first end of the gate electrode and a second contact hole that exposes a second part of the oxide semiconductor layer corresponding to an opposite end of the gate electrode. A source electrode is disposed on the insulation layer and contacts the first part of the oxide semiconductor layer through the first contact hole. A drain electrode is disposed on the insulation layer and contacts the second part of the oxide semiconductor layer through the second contact hole.
Abstract:
A method of manufacturing a thin-film transistor includes: forming an oxide semiconductor pattern including a first region and a second region on a substrate; forming an insulation film on the substrate to cover the oxide semiconductor pattern; removing the insulation film on the second region through patterning; increasing carrier density of the first region of the oxide semiconductor pattern through an annealing process; forming a gate electrode on the insulation film so that the gate electrode is insulated from the oxide semiconductor pattern and overlaps the second region; and forming a source electrode and a drain electrode to be insulated from the gate electrode and contact the first region.
Abstract:
A display device includes: an array of pixels disposed on a display area; a connection pad disposed on a pad area; a transmission line electrically coupled with the connection pad; and a conductive dummy pattern disposed under the transmission line. A part of the conductive dummy pattern overlaps the transmission line in a plan view. The transmission line transmits a driving signal or a power signal to the array of pixels. The connection pad includes a pad conductive layer electrically coupled with the transmission line, and a passivation layer disposed on the pad conductive layer. The passivation layer covers at least a side surface of the pad conductive layer and defines an opening overlapping the conductive dummy pattern and the transmission line in the plan view.
Abstract:
A display device includes a substrate; a semiconductor layer disposed on the substrate; a gate insulating film disposed on the semiconductor layer; a gate layer disposed on the gate insulating film and insulated from the semiconductor layer; an insulating film disposed on the semiconductor layer and the gate layer; and a metal layer disposed on the insulating film, wherein the semiconductor layer and the gate layer are electrically connected through the metal layer, and the semiconductor layer overlaps the gate layer in a plan view.
Abstract:
An organic light-emitting display device, which may be configured to prevent moisture or oxygen from penetrating the organic light-emitting display device from the outside is disclosed. An organic light-emitting display device, which is easily applied to a large display device and/or may be easily mass produced is further disclosed. Additionally disclosed is a method of manufacturing an organic light-emitting display device. An organic light-emitting display device may include, for example, a thin-film transistor (TFT) including a gate electrode, an active layer insulated from the gate electrode, source and drain electrodes insulated from the gate electrode and contacting the active layer and an insulating layer disposed between the source and drain electrodes and the active layer; and an organic light-emitting diode electrically connected to the TFT. The insulating layer may include, for example, a first insulating layer contacting the active layer; and a second insulating layer formed of a metal oxide and disposed on the first insulating layer.
Abstract:
A pixel circuit and an OLED display including the same are disclosed. The pixel circuit includes a driving transistor having a double gate structure, the driving transistor including a first gate electrode electrically connected to a first node, a second gate electrode electrically connected to a second node, a first electrode electrically connected to a first power supply voltage, and a second electrode electrically connected to the anode of the OLED. The pixel circuit also includes a switching transistor including a gate electrode configured to receive a scan signal, a first electrode configured to receive a data voltage, and a second electrode electrically connected to the first node. The pixel circuit further includes a storage capacitor and a compensation capacitor including a first electrode electrically connected to the second node and a second electrode electrically connected to the first electrode of the driving transistor.
Abstract:
A display device includes a lower electrode extending in a first direction and a first active layer disposed on the lower electrode and extending in a second direction perpendicular to the first direction. The first active layer includes a first area having a first width in the first direction, a second area having a second width wider than the first width in the first direction, and overlapping the lower electrode and a third area between the first area and the second area and connecting the first area to the second area.
Abstract:
A display device may include a light emitting element, a buffer layer, a gate insulation layer, and a switching element. A refractive index of the gate insulation layer may be equal to a refractive index of the buffer layer. The switching element may be electrically connected to the light emitting element and may include an active layer and a gate electrode. The active layer may be positioned between the buffer layer and the gate insulation layer and may directly contact at least one of the buffer layer and the gate insulation layer. The gate insulation layer may be positioned between the active layer and the gate electrode and may directly contact at least one of the active layer and the gate electrode.