Abstract:
A light emitting display device includes: a light emitting element; a second transistor connected to a scan line; a first transistor which applies a current to the light emitting element; a capacitor connected to a gate electrode of the first transistor; and a third transistor connected to an output electrode of the first transistor and the gate electrode of the first transistor. Channels of the second transistor, the first transistor, and the third transistor are disposed in a polycrystalline semiconductor layer, and a width of a channel of the third transistor is in a range of about 1 μm to about 2 μm, and a length of the channel of the third transistor is in a range of about 1 μm to about 2.5 μm.
Abstract:
A display device includes: a pixel including: a light emitting element connected between a first power source and a second power source; a first transistor connected between the first power source and the light emitting element to control a driving current, and including a first gate electrode connected to a first node and a second gate electrode connected to a bias control line; and a switching transistor connected between a data line and the first node, and including a gate electrode connected to a scan line; and a driving circuit to drive the pixel according to a driving frequency. The driving circuit drives the pixel in a first mode when the driving frequency is in a first range, and sequentially supplies a control signal having a first voltage and a second voltage to the bias control line during a light emission period of the pixel in the first mode.
Abstract:
A method of manufacturing a substrate for a display device includes forming a first organic layer on a base substrate; forming an inorganic layer on the first organic layer; and forming a second organic layer on the inorganic layer, where the second organic layer includes transition metal particles.
Abstract:
A display may include flexible substrate, a blocking layer on the flexible substrate, a pixel on the flexible substrate and the blocking layer, and a scan line, a data line, a driving voltage line, and an initialization voltage line connected to the pixel. The pixel may include an organic light emitting diode, a switching transistor connected to the scan line, and a driving transistor to apply a current to the organic light emitting diode. The blocking layer is in an area that overlaps the switching transistor on a plane, and between the switching transistor and the flexible substrate, and receives a voltage through a contact hole that exposes the blocking layer.
Abstract:
An organic light emitting diode display according to an exemplary embodiment includes: a substrate; a first buffer layer on the substrate; a first semiconductor layer on the first buffer layer; a first gate insulating layer on the first semiconductor layer; a first gate electrode and a blocking layer on the first gate insulating layer; a second buffer layer on the first gate electrode; a second semiconductor layer on the second buffer layer; a second gate insulating layer on the second semiconductor layer; and a second gate electrode on the second gate insulating layer.
Abstract:
A display device is disclosed. In one aspect, the display device includes a flexible substrate including a first region, a second region separated from the first region, and a bending region positioned between the first and second regions. The bending region is configured to be bent so as to have a plurality of different curvatures depending on degrees of bending of the flexible substrate. The display device also includes a first display unit positioned in the first region, a second display unit separated from the first display unit and positioned in the second region and an encapsulation layer positioned over the flexible substrate with the first and second display units interposed therebetween. The encapsulation layer directly contacts the bending region of the flexible substrate.
Abstract:
A light emitting display device includes: a light emitting element; a second transistor connected to a scan line; a first transistor which applies a current to the light emitting element; a capacitor connected to a gate electrode of the first transistor; and a third transistor connected to an output electrode of the first transistor and the gate electrode of the first transistor. Channels of the second transistor, the first transistor, and the third transistor are disposed in a polycrystalline semiconductor layer, and a width of a channel of the third transistor is in a range of about 1 μm to about 2 μm, and a length of the channel of the third transistor is in a range of about 1 μm to about 2.5 μm.
Abstract:
An organic light emitting diode display according to an exemplary embodiment includes: a substrate; a first buffer layer on the substrate; a first semiconductor layer on the first buffer layer; a first gate insulating layer on the first semiconductor layer; a first gate electrode and a blocking layer on the first gate insulating layer; a second buffer layer on the first gate electrode; a second semiconductor layer on the second buffer layer; a second gate insulating layer on the second semiconductor layer; and a second gate electrode on the second gate insulating layer.
Abstract:
A display may include flexible substrate, a blocking layer on the flexible substrate, a pixel on the flexible substrate and the blocking layer, and a scan line, a data line, a driving voltage line, and an initialization voltage line connected to the pixel. The pixel may include an organic light emitting diode, a switching transistor connected to the scan line, and a driving transistor to apply a current to the organic light emitting diode. The blocking layer is in an area that overlaps the switching transistor on a plane, and between the switching transistor and the flexible substrate, and receives a voltage through a contact hole that exposes the blocking layer.
Abstract:
A display device and a method of manufacturing the same are disclosed. In one aspect, the display device includes a flexible substrate, a thin film transistor (TFT) disposed over the flexible substrate, a first electrode disposed over the TFT, and a second electrode disposed over the first electrode. The flexible substrate includes a first incompressible liquid layer.