Abstract:
A thin film deposition source, a deposition apparatus and a deposition method using the same are disclosed. The deposition apparatus includes a deposition source including a plurality of jet nozzles that spray a deposition substance on a surface of a substrate and are arranged in a first direction, and at least one shutter controlling a jet region of the deposition substance by opening or shielding at least a portion of a jetting passageway of the deposition substance.
Abstract:
A thin film deposition apparatus and method are disclosed. In one aspect, the deposition apparatus comprises a deposition source emitting a deposition material that is to be deposited on a surface of a substrate, a transfer unit moving the deposition source, a thickness measurement sensor measuring a thickness of the deposition material deposited on the surface of the substrate, and a transfer controller adjusting a moving speed of the transfer unit according to the thickness of the deposition material deposited on the surface of the substrate per unit of time.
Abstract:
A thin film deposition source, a deposition apparatus and a deposition method using the same are disclosed. The deposition apparatus includes a deposition source including a plurality of jet nozzles that spray a deposition substance on a surface of a substrate and are arranged in a first direction, and at least one shutter controlling a jet region of the deposition substance by opening or shielding at least a portion of a jetting passageway of the deposition substance.
Abstract:
Disclosed is an organic light-emitting display device in which the substrate and the encapsulation substrate are attached to each other by using a frit. The organic light-emitting display device includes a first substrate including a pixel region in which an organic light-emitting diode is formed, and a non-pixel region. The organic light-emitting diode includes an organic light-emitting layer between a first electrode and a second electrode. A second substrate attached to the first substrate. A frit is provided between the non-pixel region of the first substrate and the second substrate to attach the first substrate and the second substrate. A reinforcement material of resin is formed outside the frit.
Abstract:
Disclosed is an organic light-emitting display device in which the substrate and the encapsulation substrate are attached to each other by using a frit. The organic light-emitting display device includes a first substrate including a pixel region in which an organic light-emitting diode is formed, and a non-pixel region. The organic light-emitting diode includes an organic light-emitting layer between a first electrode and a second electrode. A second substrate attached to the first substrate. A frit is provided between the non-pixel region of the first substrate and the second substrate to attach the first substrate and the second substrate. A reinforcement material of resin is formed outside the frit.
Abstract:
An apparatus for manufacturing an organic material includes an outer tube including an internal accommodating space, and at least one loading inner tube and at least one collecting inner tube disposed in the accommodation space, the loading inner tube including a mesh boat disposed in a first direction in which the loading inner tube extends.
Abstract:
A thin film deposition apparatus and method are disclosed. In one aspect, the deposition apparatus comprises a deposition source emitting a deposition material that is to be deposited on a surface of a substrate, a transfer unit moving the deposition source, a thickness measurement sensor measuring a thickness of the deposition material deposited on the surface of the substrate, and a transfer controller adjusting a moving speed of the transfer unit according to the thickness of the deposition material deposited on the surface of the substrate per unit of time.