Abstract:
A display device and a method of manufacturing the same. The display device includes: a substrate; and a reflection member that is disposed on a surface of the substrate and has a first thickness in a first reflection region corresponding to a light-emitting region and a second thickness in a second reflection region corresponding to a non-light-emitting region.
Abstract:
An organic light-emitting display apparatus includes a first substrate including a display unit having a light-emitting region and a non-light-emitting region, a second substrate parallel to the first substrate, and a reflective member on a surface of the second substrate that faces the first substrate, the reflective member corresponding to the non-light-emitting region of the display unit and being configured to sense touch, and the reflective member including a plurality of first pattern parts electrically connected along a first direction and a plurality of second pattern parts electrically connected along a second direction.
Abstract:
A display device and a method of manufacturing the same. The display device includes: a substrate; and a reflection member that is disposed on a surface of the substrate and has a first thickness in a first reflection region corresponding to a light-emitting region and a second thickness in a second reflection region corresponding to a non-light-emitting region.
Abstract:
A data driving apparatus includes a first data driver and a second data driver. The first data driver is configured to generate data signals to data lines of a display panel, and includes data pads configured to output the data signals, a first common voltage pad configured to output a common voltage to the display panel, and a gate driving signal pad configured to output a gate driving signal to a gate driver, which is configured to output a gate signal to a gate line of the display panel. The second data driver is disposed between two first data drivers; is configured to generate the data signal provided to the data line; and includes a second common voltage pad configured to output the common voltage to the display panel. Thus, a width of a bezel of the display apparatus may be decreased.
Abstract:
An organic light-emitting display apparatus may include a substrate, a display portion formed on the substrate and including a light-emitting area and a non-light-emitting area surrounding the light-emitting area, an encapsulation member arranged to face the substrate with the display portion interposed therebetween, and a reflection member provided on the encapsulation member and including an opening portion aligned with the light-emitting area and a reflection portion surrounding the opening portion and extending to cover the non-light-emitting area, the opening portion comprising an opening. The size of the opening may be smaller than that of the light-emitting area and thus an edge of the light-emitting area may be covered by the reflection portion. The opening portion may have an inverted taper shape, the size of the opening gradually increasing toward the display portion.
Abstract:
A display device and a method of manufacturing the same. The display device includes: a substrate; and a reflection member that is disposed on a surface of the substrate and has a first thickness in a first reflection region corresponding to a light-emitting region and a second thickness in a second reflection region corresponding to a non-light-emitting region.
Abstract:
An organic light display device includes a first substrate, light emitting structures, a second substrate and a reflective member. The first substrate includes a plurality of pixel regions, each pixel region including a plurality of sub-pixel regions, and a reflective region which surrounds the sub-pixel regions. The reflective region excludes the sub-pixel regions. The light emitting structures are respectively disposed in the sub-pixel regions on the first substrate. The second substrate is opposite to the first substrate. The reflective member is disposed in the reflective region on the lower surface of the second substrate. First openings exposing the sub-pixel regions and a second opening exposing at least a portion the reflective region are located in the reflective member.
Abstract:
A data driving apparatus includes a first data driver and a second data driver. The first data driver is configured to generate data signals to data lines of a display panel, and includes data pads configured to output the data signals, a first common voltage pad configured to output a common voltage to the display panel, and a gate driving signal pad configured to output a gate driving signal to a gate driver, which is configured to output a gate signal to a gate line of the display panel. The second data driver is disposed between two first data drivers; is configured to generate the data signal provided to the data line; and includes a second common voltage pad configured to output the common voltage to the display panel. Thus, a width of a bezel of the display apparatus may be decreased.
Abstract:
An organic light emitting display device includes a first substrate, a light emitting structure, a light transmitting member, and a second substrate. The first substrate includes a pixel region and a transparent region. The light emitting structure is positioned in the pixel region of the first substrate. The light transmitting member is positioned in the transparent region. The second substrate is disposed on the light emitting structure and the light transmitting member. The light is not refracted in interfaces between the light transmitting member and the first substrate and between the light transmitting member and the second substrate.
Abstract:
An organic light emitting display apparatus includes a substrate, an encapsulation member facing the substrate, a plurality of pixels between the substrate and the encapsulation member, each pixel including a light emission area and a non-emission area, a first electrode overlapping at least the light emission area, an intermediate layer on the first electrode and including an organic emission layer, a second electrode on the intermediate layer, and a reflective member on a bottom surface of the encapsulation member, the bottom surface of the encapsulation member facing the substrate, and the reflective member including an opening corresponding to the light emission area, and a reflective surface around the opening and corresponding to the non-emission area.