Abstract:
A display device includes a display unit including pixels coupled to scan lines and data lines, a data driver which supplies a data signal to pixels through the data lines, a scan driver which generates a scan signal using a first scan voltage and a second scan voltage, and supplying the scan signal to the pixels through the scan lines, a processor which generates first scan voltage information by setting a first scan voltage level, based on an ambient temperature of the display device, a timing controller which generates a power control signal using the first scan voltage information and delta voltage information, and a power supply which generates the first scan voltage and a delta voltage using the power control signal, and generates the second scan voltage by dropping the delta voltage from the first scan voltage.
Abstract:
A power supply includes a voltage converter circuit which converts an input voltage into an output voltage and outputs the output voltage, a voltage controller which controls the voltage converter circuit in response to a first feedback voltage or a second feedback voltage, a feedback terminal which supplies the first feedback voltage, an internal voltage divider circuit which supplies the second feedback voltage, and a switch unit which transfers the first feedback voltage or the second feedback voltage to the voltage controller.
Abstract:
A display device includes at least one light source array configured to provide a display panel with light, a dimming signal generating unit configured to receive an image data signal and generate a dimming signal, a first comparator configured to receive the dimming signal output from the dimming signal generating unit and a preset critical value and generate a comparison signal, a dimming modulating unit configured to receive the comparison signal output from the first comparator and the dimming signal output from the dimming signal generating unit and modulate the dimming signal, a constant current controller configured to receive the dimming signal output from the dimming modulating unit and a voltage from a sensor node, and to control a light driving current driving the light source array, and a resistor controller configured to change resistors connected to the sensor node by the comparison signal output from the first comparator.
Abstract:
An overcurrent protective system includes a current detector which detects a current flowing in an element which is to be protected by the overcurrent protective system, an overcurrent counting unit which selects an overcurrent sensing level corresponding to the element among a plurality of overcurrent sensing levels which are threshold values becoming standards for determining whether the current detected by the current detector is a normal current or an overcurrent and which determines whether the current is the overcurrent or not by comparing the current with the selected overcurrent sensing level, and a controller which decreases an output voltage of a circuit which is to be protected by the overcurrent protective system and includes the element when the current flowing in the element is determined as the overcurrent.
Abstract:
A display device is provided. The display device includes a display panel, a backlight unit, and a luminance comparison unit. The backlight unit is configured to supply light to the display panel. The luminance comparison unit is configured to compare a measured luminance of the display panel with a reference luminance range. The backlight unit includes a light source unit, a DC-DC converter, and a driving current controller. The DC-DC converter is configured to supply a driving voltage to the light source unit, and the driving current controller is configured to control a driving current flowing to the light source unit based on the comparison result of the luminance comparison unit.
Abstract:
Provided are a circuit board, and a method of mounting an electronic component on the circuit board. The circuit board according to an exemplary embodiment of the present invention includes: a pad pattern including a basic pattern and one or more additional patterns connected to the basic pattern, in which the basic pattern includes a region in which a connection terminal of an electronic component is attached by solder, the one or more additional patterns include regions in which the connection terminal of the electronic component is not attached, and the basic pattern includes an exposed side or an exposed point capable of limiting a mounting position so as to prevent the electronic component from exceeding an alignment margin.