Abstract:
An organic light-emitting display includes a display unit configured to generate an image and a wire grid polarizer on the display unit; the wire grid polarizer includes a base substrate and a plurality of wire grids formed on the base substrate, wherein the plurality of wire grids are spaced from one another and disposed in parallel, and a first spacing between each pair of the plurality of wire grids in a first region of the base substrate and a second spacing between each pair of the plurality of wire grids in a second region of the base substrate is different.
Abstract:
A display apparatus is disclosed. In one aspect the apparatus includes a touch panel, an information processor, a memory and a display panel. The touch panel generates a current touch signal including a current touch position of a touch. The information processor receives the current touch signal from the touch panel and a stored touch signal to compare the stored touch signal with the current touch signal to generate dynamic luminance information. The memory receives the current touch signal from the information processor to store the current touch signal as the stored touch signal. The display panel receives the dynamic luminance information from the information processor to display an image having different luminances in an emphasizing region corresponding to the current touch signal and the stored touch signal and a background region surrounding the emphasizing region, respectively.
Abstract:
An infrared detector includes a substrate, a light blocking layer on the substrate, a lower electrode on the light blocking layer, the lower electrode electrically connected to the light blocking layer, a lower insulating layer on the light blocking layer, a first semiconductor layer on the lower insulating layer, a first source electrode and a first drain electrode on the first semiconductor layer, an upper insulating layer on the first semiconductor layer, and a first gate electrode on the upper insulating layer, the first gate electrode electrically connected to the lower electrode, where the first semiconductor layer includes a zinc and a nitrogen, and the first semiconductor layer is configured to generate electric charges by reacting with an infrared ray.
Abstract:
An organic light-emitting display apparatus includes: a first substrate; a display unit on the first substrate, the display unit being divided into a pixel unit and a non-pixel unit located around the pixel unit; a first electrode having an island shape to correspond to the pixel unit; a second electrode facing the first electrode and over the pixel unit and the non-pixel unit; an organic light-emitting layer between the first electrode and the second electrode and to emit light toward the second electrode; a second substrate facing the second electrode and bonded with the first substrate; and a light output unit arranged as a part corresponding to the pixel unit and a light reflection unit arranged as a part corresponding to the non-pixel unit, wherein the light output unit and the light reflection unit are on an internal surface of the second substrate facing the second electrode.
Abstract:
An oxide semiconductor device includes a gate electrode on a substrate, a gate insulation layer on the substrate, the gate insulation layer having a recess structure over the gate electrode, a source electrode on a first portion of the gate insulation layer, a drain electrode on a second portion of the gate insulation layer, and an active pattern on the source electrode and the drain electrode, the active pattern filling the recess structure.
Abstract:
An infrared detector includes a substrate, a light blocking layer on the substrate, a lower electrode on the light blocking layer, the lower electrode electrically connected to the light blocking layer, a lower insulating layer on the light blocking layer, a first semiconductor layer on the lower insulating layer, a first source electrode and a first drain electrode on the first semiconductor layer, an upper insulating layer on the first semiconductor layer, and a first gate electrode on the upper insulating layer, the first gate electrode electrically connected to the lower electrode, where the first semiconductor layer includes a zinc and a nitrogen, and the first semiconductor layer is configured to generate electric charges by reacting with an infrared ray.
Abstract:
An infrared detector includes a substrate, a light blocking layer on the substrate, a lower electrode on the light blocking layer, the lower electrode electrically connected to the light blocking layer, a lower insulating layer on the light blocking layer, a first semiconductor layer on the lower insulating layer, a first source electrode and a first drain electrode on the first semiconductor layer, an upper insulating layer on the first semiconductor layer, and a first gate electrode on the upper insulating layer, the first gate electrode electrically connected to the lower electrode, where the first semiconductor layer includes a zinc and a nitrogen, and the first semiconductor layer is configured to generate electric charges by reacting with an infrared ray.
Abstract:
A flat panel display device includes a plurality of scan lines elongated in a direction, a plurality of data lines elongated to intersect the scan lines, a plurality of pixel devices respectively coupled to the plurality of scan lines and the plurality of data lines, a plurality of first sensing lines elongated parallel to the scan lines, a plurality of second sensing lines elongated parallel to the data lines, and a plurality of sensing devices respectively coupled to the plurality of first sensing lines and the plurality of second sensing lines.
Abstract:
An oxide semiconductor device includes a gate electrode on a substrate, a gate insulation layer on the substrate, the gate insulation layer having a recess structure over the gate electrode, a source electrode on a first portion of the gate insulation layer, a drain electrode on a second portion of the gate insulation layer, and an active pattern on the source electrode and the drain electrode, the active pattern filling the recess structure.
Abstract:
An organic light-emitting display includes a display unit configured to generate an image and a wire grid polarizer on the display unit; the wire grid polarizer includes a base substrate and a plurality of wire grids formed on the base substrate, wherein the plurality of wire grids are spaced from one another and disposed in parallel, and a first spacing between each pair of the plurality of wire grids in a first region of the base substrate and a second spacing between each pair of the plurality of wire grids in a second region of the base substrate is different.