Abstract:
A display device includes a first substrate and a second substrate opposing each other, a reflecting layer, which reflects light incident on the reflecting layer, on the first substrate, a polarizing layer which is disposed on the second substrate and includes a polarizing portion that polarizes light incident on the polarizing portion and a reflecting portion that reflects light incident on the reflecting portion, a liquid crystal layer between the reflecting layer and the polarizing layer, and a retardation layer between the liquid crystal layer and the polarizing layer.
Abstract:
A display device includes a first substrate. A first gate line is disposed on the first substrate. First and second data lines intersect the first gate line. A first transistor is connected to the first gate line and the first data line. A second transistor is connected to the first gate line and the second data line. A first passivation layer is disposed on the first and second transistors, the first passivation layer including a first contact hole. A first pixel electrode is disposed on the first passivation layer, the first pixel electrode being connected to the first transistor through the first contact hole. A second pixel electrode is disposed on the first passivation layer, the second pixel electrode being connected to the second transistor through the first contact hole. The first and second transistors are both exposed through the first contact hole.
Abstract:
A reflective display device includes: first and second substrates opposing one another; a liquid crystal layer between the first and second substrates; a gate line on the first substrate; a gate insulating layer on the gate line; a data line on the gate insulating layer and intersecting the gate line; a thin film transistor connected to the gate line and the data line; a first passivation layer on the data line and the thin film transistor; a reflective electrode on the first passivation layer; a second passivation layer on the reflective electrode; a pixel electrode on the second passivation layer; a common electrode on the second substrate; and a matrix electrode on at least one of the first and second substrates. The matrix electrode defines a pixel area.
Abstract:
A display apparatus includes a first substrate including a channel-forming area, a second substrate facing the first substrate, a thin-film transistor disposed on the first substrate, a pixel electrode electrically connected to the thin-film transistor, a gate line disposed on the first substrate and electrically connected to the thin-film transistor, a data line electrically connected to the thin-film transistor and divided into at least two portions such that the channel-forming area is disposed between the two portions of the data line, and a connection portion electrically connecting the two portions of the data line to each other, in which the thin-film transistor includes a gate electrode branched from the gate line and overlapping the channel-forming area, a semiconductor pattern overlapping the gate electrode and contacting the two portions of the data line so that the channel-forming area is disposed in the semiconductor pattern, and a drain electrode electrically connected to the pixel electrode and overlapping the semiconductor pattern.
Abstract:
A thin film transistor substrate, includes: pixels disposed in a display area of the thin film transistor substrate and connected to gate lines and data lines; gate pad parts connected to first ends of the gate lines; first test transistors each being connected to a second end of a corresponding gate line of the gate lines; data pad parts connected to first ends of the data lines; and second test transistors each being connected to a second end of a corresponding data line of the data lines. The gate pad parts, the data pad parts, the first test transistors, and the second test transistors are disposed in a non-display area of the thin film transistor substrate. The first test transistors are configured to be switched to receive a first inspection signal and the second test transistors are configured to be switched to receive a second inspection signal.
Abstract:
A display device includes a display panel including a pixel including a first sub-pixel displaying a first color, a second sub-pixel displaying a second color, and a third sub-pixel displaying a third color, a data driver applying a data voltage generated based on input image data to the pixel in an active period, sensing the first sub-pixel to generate first sensing data in a blank period, sensing the second sub-pixel to generate second sensing data in the blank period, and sensing the third sub-pixel to generate third sensing data in the blank period, and a driving controller compensating for the first sensing data, the second sensing data, and the third sensing data based on a grayscale value of the input image data.
Abstract:
An electronic apparatus includes a display panel including a base substrate, a pixel definition layer to define openings, light-emitting devices including light-emitting patterns in the openings, and an encapsulation layer covering the light-emitting device, a cover panel including a window layer, a color filter layer, and a color control layer, the color filter layer being on the window layer, the color control layer being on the color filter layer and including a quantum dot, and a refraction control layer including first refraction patterns, overlapping the light-emitting patterns, respectively, and having a first refractive index, and a second refraction pattern adjacent to the first refraction patterns and having a second refractive index that is lower than the first refractive index, wherein, when measured in a first direction, a largest width of each of the first refraction patterns is larger than a width of each of the light-emitting patterns.
Abstract:
A display device includes a liquid crystal display panel including a first substrate, a second substrate facing the first substrate and including a reflective layer, and a liquid crystal layer disposed between the first and second substrates, a light control member disposed on the liquid crystal display panel and including a first optical part, and a polarizing member disposed on the light control member and including a polarizer. The liquid crystal layer includes a first liquid crystal molecule adjacent to the first substrate, and a long axis of the first liquid crystal molecule projected on the first substrate is aligned in a first direction. An extending direction of a long axis of the first optical part projected on the first substrate is parallel to the first direction, and the polarizer has a transmission axis extending in a second direction.
Abstract:
A thin film transistor substrate a display area that includes pixels connected to gate lines and data lines crossing the gate lines, a non-display area disposed adjacent to the display area, data pads disposed in the non-display area and each being connected to a first end of a corresponding data line of the data lines, first transistors disposed in the non-display area and each being connected to a second end of the corresponding data line of the data lines, OS pads connected to the second end of the data lines, and repair lines disposed in the non-display area along a vicinity of the display area and arranged while interposing the first transistors therebetween. The OS pads are overlapped with the first transistors and the repair lines.
Abstract:
A thin film transistor substrate, includes: pixels disposed in a display area of the thin film transistor substrate and connected to gate lines and data lines; gate pad parts connected to first ends of the gate lines; first test transistors each being connected to a second end of a corresponding gate line of the gate lines; data pad parts connected to first ends of the data lines; and second test transistors each being connected to a second end of a corresponding data line of the data lines. The gate pad parts, the data pad parts, the first test transistors, and the second test transistors are disposed in a non-display area of the thin film transistor substrate. The first test transistors are configured to be switched to receive a first inspection signal and the second test transistors are configured to be switched to receive a second inspection signal.