Abstract:
A method of manufacturing an electrowetting display device includes a preliminary partition wall pattern formed on a lower substrate on which a pixel electrode of an oxide series and an insulation layer are formed. The preliminary partition wall pattern is disposed along a boundary of the pixel electrode. A water-repellent layer including a self-assembled monolayer having a hydrophobic property is formed on the lower substrate. A portion of the preliminary partition wall pattern and the water-repellent layer formed on the preliminary partition wall pattern are removed to form a partition wall pattern on the insulation layer and to form a water-repellent pattern on the pixel electrode and the insulation layer between partition walls of the partition wall patterns. A fluid layer is formed on the lower substrate on which the water-repellent pattern is formed. The lower substrate and an upper substrate are combined with each other.
Abstract:
A display panel includes an array substrate, an opposite substrate facing the array substrate, and a liquid crystal layer between the substrates. The array substrate includes a first polarizer, a first insulating layer covering the first metal layer, a gate electrode on the first insulating layer, a gate insulation layer on the gate electrode, a channel layer on the gate insulation layer, source and drain electrodes on the channel layer, a protecting layer covering the source and drain electrodes and including a contact hole exposing the drain electrode, and a first electrode on the protecting layer and electrically connected to the drain electrode through the contact hole. The first polarizer includes a first substrate, a first antistatic layer on the first substrate and including a conductive material, and a first metal layer on the first antistatic layer and including a plurality of protrusions which form a wire grid pattern.
Abstract:
A display panel includes a substrate, a gate line, a color filter and a roof layer. The substrate includes a thin film transistor disposed thereon. The gate line extends along a first direction on the substrate and is connected to the thin film transistor. The color filter is disposed on the substrate. The roof layer is disposed on the color filter and is configured to define a tunnel-shaped cavity between the roof layer and the color filter. The tunnel-shaped cavity extends along a second direction crossing the first direction. A cross-sectional thickness of an area of the roof layer adjacent to the gate lines is smaller than a cross-sectional thickness of another area of the roof layer spaced apart from the gate lines.
Abstract:
A display panel includes a substrate including a plurality of thin-film transistors thereon, a plurality of gate lines respectively connected to a thin film transistor and disposed on the substrate, a color filter layer disposed on the substrate and the gate lines, a black matrix disposed on the color filter and overlapped with the gate lines, and a hole defined in the black matrix and exposing the color filter layer, a first electrode disposed on the color filter and electrically connected to the thin-film transistor and an image displaying layer disposed on the first electrode.
Abstract:
A liquid crystal display includes a substrate, a thin film transistor disposed on the substrate, a pixel electrode disposed on the thin film transistor, a roof layer facing the pixel electrode, and at least one partition wall disposed along an edge of the substrate, in which a plurality of microcavities is formed between the pixel electrode and the roof layer, and the plurality of microcavities includes a liquid crystal material.
Abstract:
An inkjet print head includes a main body including carbon allotrope, and an ink storage configured to store an ink and including a space defined in the main body. A protecting layer is on an inner surface of the main body, and includes parylene. An inorganic layer is on the protecting layer. An organic layer is on the inorganic layer.
Abstract:
An inkjet print head includes a jet assembly which includes a nozzle plate, the nozzle plate including an ink transferring path on a bottom surface of the nozzle plate, and a jet jetting a transferred ink out of the head. A printed circuit substrate is connected to the jet assembly and includes an integrated circuit and a connection electrode. A barrier coating layer covers a surface of the printed circuit substrate and an inner surface and an outer surface of the jet assembly except a bottom surface of the nozzle plate and a surface of the connection electrode of the jet assembly and the printed circuit substrate being connected with each other. The barrier coating layer has a layered structure which includes a flexible layer, a diffusion barrier layer, and a hydrophobic layer.
Abstract:
An inkjet print head includes a jet assembly which includes a nozzle plate, the nozzle plate including an ink transferring path on a bottom surface of the nozzle plate, and a jet jetting a transferred ink out of the head. A printed circuit substrate is connected to the jet assembly and includes an integrated circuit and a connection electrode. A barrier coating layer covers a surface of the printed circuit substrate and an inner surface and an outer surface of the jet assembly except a bottom surface of the nozzle plate and a surface of the connection electrode of the jet assembly and the printed circuit substrate being connected with each other. The barrier coating layer has a layered structure which includes a flexible layer, a diffusion barrier layer, and a hydrophobic layer.
Abstract:
An electrowetting display device includes a first substrate comprising a wall pattern surrounding a pixel electrode disposed in a display area of the first substrate, a spaced apart second substrate comprising a common electrode and a dam member disposed in a peripheral area surrounding the display area. The dam member has sealable openings (a.k.a. sealable dam spillways) through which there is discharged an excess portion of an excessively supplied wetting layer, the discharge of the excess occurring while the first and second substrates are brought together about top and bottom portions of a sealing ring that seals them together.
Abstract:
An electrowetting display device includes a first substrate comprising a wall pattern surrounding a pixel electrode disposed in a display area of the first substrate, a spaced apart second substrate comprising a common electrode and a dam member disposed in a peripheral area surrounding the display area. The dam member has sealable openings (a.k.a. sealable dam spillways) through which there is discharged an excess portion of an excessively supplied wetting layer, the discharge of the excess occurring while the first and second substrates are brought together about top and bottom portions of a sealing ring that seals them together.