Abstract:
A display device includes a substrate. The substrate includes a display area and a non-display area, and the display area includes an emission area and a non-emission area. A display element layer includes a light emitting element on the emission area of the substrate. A bank is on the display element layer and overlaps the non-display area and the non-emission area of the substrate in a plan view. A color conversion layer is on the display element layer, overlaps the emission area in the plan view, and is to convert a color of light emitted from the light emitting element. An organic insulating layer is on the color conversion layer and the bank. A maximum thickness of the bank is about 4 μm to about 20 μm. An average inclination angle of a first side surface of the bank adjacent to an edge of the substrate in the non-display area based on an upper surface of the substrate is less than or equal to about 45 degrees.
Abstract:
A display device includes a light emitting element disposed on a substrate. A color conversion layer is disposed on the light emitting element, the color conversion layer including color conversion particles that convert light of a first color emitted from the light emitting element into light of a second color. An insulating layer is disposed on the color conversion layer. The insulating layer includes a first inorganic layer overlapping the color conversion layer, a second inorganic layer disposed on the first inorganic layer, and a third inorganic layer disposed on the second inorganic layer. A second porosity of the second inorganic layer is greater than a first porosity of the first inorganic layer. A second porosity of the second inorganic layer is greater than a third porosity of the third inorganic layer.
Abstract:
A display device includes a display area including a first light-emitting area and a second light-emitting area; a peripheral area adjacent to the display area; pixels which emit incident light; an encapsulation layer covering the pixels; a first color-converting pattern corresponding to the first light-emitting area and having a refractivity; a transmission pattern corresponding to the second light-emitting area and through which the incident light is transmitted; a low refractivity layer is in the display area and facing the encapsulation layer with each of the first color-converting pattern and the transmission pattern therebetween, the low refractivity layer including: a resin and a hollow particle which define a refractivity lower than the refractivity of the first color-converting pattern; and a first dam structure in the peripheral area and spaced apart from the display area, the first dam structure and the transmission pattern being portions of a same material layer.
Abstract:
A display device includes a base layer, a first pixel transistor, a first gate line, a first data line electrically connected to the first pixel transistor, a first pixel electrode electrically connected to the first pixel transistor and overlapping the first data line in a plan view, and a porous layer. The porous layer is disposed between the first data line and the first pixel electrode and includes a matrix including a polymer resin and a plurality of void portions defined in the matrix. The display device is capable of displaying a sharp image because the porous layer alleviates or prevents a crosstalk between the first data line and the first pixel electrode.
Abstract:
Provided are a wavelength conversion layer and a display device. A color conversion element comprises: a wavelength conversion layer; one or more low refractive layers which are disposed on and/or under the wavelength conversion layer and have a lower refractive index than the wavelength conversion layer; and one or more capping layers which are disposed between the wavelength conversion layer and the low refractive layers and/or on a surface opposite to a surface of each of the low refractive layers which faces the wavelength conversion layer.
Abstract:
A manufacturing method of an organic light emitting diode (OLED) display is disclosed. The manufacturing method in accordance with an exemplary embodiment includes: preparing a flexible substrate and a display panel including a thin film encapsulation (TFE) layer for covering and protecting an OLED formed on the flexible substrate; attaching a first protection film to the TFE layer by using a first adhesive to be opposite to the TFE layer; heating a second protection film; and pressing and attaching a second protection film onto the flexible substrate by using a second adhesive.
Abstract:
Provided is a display panel including: an array substrate; an opposite substrate facing the array substrate and including a second base substrate and a common electrode disposed on the second base substrate; and a liquid crystal layer disposed between the array substrate and the opposite substrate. The array substrate includes: a first base substrate disposed in a display area and a non-display area; a photosensitive polymer organic layer disposed in a first non-display area and extending to a pad area, the photosensitive polymer organic layer having a taper shape at an end portion of the first non-display area; a thin film transistor disposed on the first base substrate in the display area; a pixel electrode connected to the thin film transistor; and a signal input pad connected to the thin film transistor and disposed on the photosensitive polymer organic layer in the pad area.
Abstract:
A display apparatus includes a display panel, a gate driver, and a data driver. The display panel includes a display area in which an image is displayed and a non-display area disposed adjacent to the display area. The display panel includes an insulating substrate which has a groove. The gate driver is disposed to overlap with the display area when viewed in a plan view. At least part of the gate driver is formed on the groove.
Abstract:
A display device includes a bank including an opening defining a plurality of pixels; a plurality of light emitting elements disposed in the plurality of pixels; a color conversion layer disposed on the plurality of light emitting elements in the opening; and a low refractive layer disposed on the color conversion layer in the opening.
Abstract:
A display panel includes an array substrate, an opposite substrate facing the array substrate, and a liquid crystal layer disposed between the array substrate and the opposite substrate. The array substrate includes a display area and a non-display area surrounding the display area, and the non-display area includes a first non-display area disposed adjacent to a side portion of the display area and a second non-display area other than the first non-display area. The first non-display area overlaps the opposite substrate. The array substrate and the opposite substrate have the same or substantially the same area and a wire member is disposed under the array substrate to be connected to an external circuit module. Accordingly, the display panel does not need an extra space for the wire member, and thus the non-display area is reduced.