Abstract:
An electronic apparatus and an operating method are provided. The electronic apparatus includes a motion sensor, an optical sensor, a memory, and a processor. The processor determines whether the electronic apparatus is worn on a user's body using at least one of the motion sensor and the optical sensor. The processor obtains sensor data according to a motion of the electronic apparatus using at least one of the motion sensor and the optical sensor when determining whether the electronic apparatus is worn on the user's body. In addition, the processor compares the obtained data with at least one reference information stored in the memory, determines whether the electronic apparatus is normally worn based on the comparison, and performs at least one operation based on the determination.
Abstract:
An electronic device and a method are provided. The electronic device can include a motion sensor, a heart rate monitor sensor, and a processor functionally coupled with the motion sensor and the heart rate monitor sensor. The processor can be configured to obtain first motion sensor data for a first duration using the motion sensor, obtain first heartbeat data for the first duration using the heart rate monitor sensor, determine an exercise type based on the first motion sensor data, determine a heartbeat prediction range based on at least one of the first motion sensor data, the exercise type, and the first heartbeat data, obtain second heartbeat data for a second duration using the heart rate monitor sensor, determine whether the second heartbeat data falls within the heartbeat prediction range, and determine heartbeat data of the second duration based on the determination result.
Abstract:
Various exemplary embodiments provide an electronic device configured to include one or more sensor modules, at least one memory, a display, and a first processor or second processor operatively coupled to the one or more sensor modules, the at least one memory, and/or the display, wherein the first processor is configured to acquire sensor data from at least one sensor module among the one or more sensor modules, calculate a difference between at least two data points in the acquired sensor data, determine user's activity information based on at least one of a period of the sensor data, a magnitude of the difference, and a change amount of the difference, and deliver the user's activity information to the second processor, and wherein the second processor is configured to display, on the display, a user interface related to the user's activity information delivered from the first processor. Other exemplary embodiments are also possible.
Abstract:
An electronic device and its operating method are provided. The method includes, while a display displays content, identifying, by a first processor, state information of the electronic device using a first sensor based on a first cycle, determining, by the first processor, whether the state information is maintained using the first sensor based on a second cycle, when determining that the state information is maintained based on the second cycle, providing, by the first processor to a second processor, first notification information corresponding to the determination, and changing, by the second processor, a state of the display in response to the first notification information.
Abstract:
A method of an electronic device is provided. The method includes obtaining first state information related to a motion of the electronic device by using a first sensor operatively coupled to the electronic device while the electronic device is in a first state, transitioning, if the first state information satisfies a first designated condition, the electronic device from the first state to a second state, obtaining second state information related to at least a part of a user's body corresponding to the electronic device by using a second sensor operatively coupled to the electronic device while the electronic device is in the second state, and transitioning, if the second state information satisfies a second designated condition, the electronic device from the second state to a third state.