Abstract:
Various examples of a connector device for connecting an electronic device with an external electronic device are described. An electronic device may comprise a first universal serial bus (USB)-type first plug including a first terminal, a second terminal, a third terminal, a fourth terminal, and a fifth terminal, a second USB-type second receptacle including a sixth terminal, a seventh terminal, an eighth terminal, a ninth terminal, and a tenth terminal, a first conducting line electrically connecting the first terminal and the sixth terminal, a second conducting line electrically connecting the second terminal and the sixth terminal, a third conducting line electrically connecting the third terminal and the eighth terminal, a fourth conducting line electrically connecting the fourth terminal and the ninth terminal, a fifth conducting line electrically connecting the fifth terminal and the tenth terminal, a first resistor connected to the second conducting line, and a second resistor connected between the second terminal and the seventh terminal to enable a first electronic device connected to the first plug to recognize a second electronic device connected to the second receptacle.
Abstract:
The present disclosure relates to an improvement in the quality of a transmitted signal, and more particularly, to an electronic apparatus and a method which are provided with a passive equalizer improving the quality of a transmitted signal when a signal is transmitted/received to/from an external apparatus, and a system for the same. The present disclosure provides a signal transmission system for improving the quality of a transmitted signal. The signal transmission system may include a transmitter that transmits a signal; a receiver that receives the signal from the transmitter; a channel that is formed between the transmitter and the receiver and transmits the signal delivered by the transmitter; and a passive equalizer that is formed between the transmitter and the receiver and controls the signal so as to have a higher impedence than a predetermined impedance at a lower frequency than a predetermined frequency of the signal.
Abstract:
An electronic device and a method for changing modes according to external devices connected through a universal serial bus (USB) and controlling the strength of signals communicated according to changed modes are provided. The method includes detecting a connection with an external device corresponding to booting of the electronic device, determining a mode of the electronic device according to the detected connection with the external device, varying a characteristic setting of an input output (IO) buffer to a certain strength corresponding to the determined mode, and communicating a signal at a strength corresponding to the varied setting.
Abstract:
Disclosed is an electronic device including a power regulator; a processor; a connector comprising first power pins that electrically connect an external electronic device with the power regulator, and first data reception pins that are disposed adjacent to at least some of the first power pins and electrically connect second data transmission pins of a connector of the external electronic device with data reception terminals of the processor; and one or more first receiver capacitors that are electrically connected to the first data reception pins and to the processor in order to block power from leaking into the first data reception pins from the at least some of the first power pins.
Abstract:
A driving device includes an output timing controller which controls an output timing of a first driving voltage and a second driving voltage respectively generated from a first voltage generator and a second voltage generator. A third driving voltage output from the output timing controller is provided to a first data driver and a second data driver, and also provided to a gamma voltage generator to generate a plurality of gamma voltages. Accordingly, a reverse electric potential between the third driving voltage and the gamma voltages is prevented from being generated in the first and second data drivers, therefore, preventing the first and second data drivers from being damaged.