Abstract:
A semiconductor device and a method of fabricating the same include a semiconductor substrate, a high-k dielectric pattern and a metal-containing pattern sequentially being stacked on the semiconductor substrate, a gate pattern including poly semiconductor and disposed on the metal-containing pattern, and a protective layer disposed on the gate pattern, wherein the protective layer includes oxide, nitride and/or oxynitride of the poly semiconductor.
Abstract:
A semiconductor device and a method of fabricating the same include a semiconductor substrate, a high-k dielectric pattern and a metal-containing pattern sequentially being stacked on the semiconductor substrate, a gate pattern including poly semiconductor and disposed on the metal-containing pattern, and a protective layer disposed on the gate pattern, wherein the protective layer includes oxide, nitride and/or oxynitride of the poly semiconductor.
Abstract:
A method of controlling an etching process for forming fine patterns of a semiconductor device includes forming a lower pattern having a plurality of openings on a substrate, obtaining a width value of the lower pattern, and controlling a process recipe of an etching process for forming the lower pattern by using the width value.
Abstract:
A semiconductor device and a method of fabricating the same include a semiconductor substrate, a high-k dielectric pattern and a metal-containing pattern sequentially being stacked on the semiconductor substrate, a gate pattern including poly semiconductor and disposed on the metal-containing pattern, and a protective layer disposed on the gate pattern, wherein the protective layer includes oxide, nitride and/or oxynitride of the poly semiconductor.
Abstract:
A method of controlling an etching process for forming fine patterns of a semiconductor device includes forming a lower pattern having a plurality of openings on a substrate, obtaining a width value of the lower pattern, and controlling a process recipe of an etching process for forming the lower pattern by using the width value.
Abstract:
An image sensor includes a substrate having first and second surfaces. A separation structure penetrates the substrate. Photoelectric conversion device regions are spaced apart from each other in the substrate. Color filters are disposed on the second surface of the substrate. Microlenses are disposed on the color filters. The separation structure includes lower and upper separation patterns, first line portions that run parallel to each other, and second line portions that perpendicularly intersect the first line portions. An upper surface of the lower separation pattern or a lower surface of the upper separation pattern has a wavy or sawtooth shape. In intersecting regions in which the first line portions and the second line portions intersect, a vertical length of one of the lower separation pattern and the upper separation pattern is about 2 to 10 times greater than a vertical length of the other.
Abstract:
An image sensor including: a semiconductor substrate including a plurality of pixel regions; an anti-reflection layer on the semiconductor substrate; color filters provided on the anti-reflection layer and in the pixel regions; and a fence structure disposed between adjacent ones of the color filters, wherein the fence structure includes: a lower portion penetrating the anti-reflection layer; an upper portion on the anti-reflection layer; and an intermediate portion between the lower portion and the upper portion, wherein the fence structure has undercut regions, which are provided at both sides of the intermediate portion and are between the upper portion of the fence structure and a top surface of the anti-reflection layer.
Abstract:
A semiconductor device and a method of fabricating the same include a semiconductor substrate, a high-k dielectric pattern and a metal-containing pattern sequentially being stacked on the semiconductor substrate, a gate pattern including poly semiconductor and disposed on the metal-containing pattern, and a protective layer disposed on the gate pattern, wherein the protective layer includes oxide, nitride and/or oxynitride of the poly semiconductor.