Abstract:
A method of manufacturing a semiconductor light emitting device, includes forming a conductive film on a surface of a semiconductor light emitting element. Phosphor particles are charged by mixing phosphor particles with an electrolyte having a metallic salt dissolved therein. The semiconductor light emitting element having the conductive film formed thereon is immersed in the electrolyte having the charged phosphor particles. A phosphor layer on the conductive film is formed by electrophoresing the phosphor particles. The conductive film is removed using wet etching.
Abstract:
A method of manufacturing a semiconductor light emitting device, includes forming a conductive film on a surface of a semiconductor light emitting element. Phosphor particles are charged by mixing phosphor particles with an electrolyte having a metallic salt dissolved therein. The semiconductor light emitting element having the conductive film formed thereon is immersed in the electrolyte having the charged phosphor particles. A phosphor layer on the conductive film is formed by electrophoresing the phosphor particles. The conductive film is removed using wet etching.
Abstract:
A light emitting diode apparatus is provided. The light emitting diode apparatus includes a wavelength conversion layer, a light emitting diode layer, a light transmission layer, and a sheath layer. The wavelength conversion layer has a first refractive index. The light emitting diode layer includes a base layer arranged on the wavelength conversion layer, and a light emitting structure layer arranged on the base layer. The light transmission layer is arranged on the wavelength conversion layer, surrounds a sidewall of the light emitting diode layer and contacts the sidewall of the light emitting diode layer, and has a second refractive index. The sheath layer is arranged to cover the light emitting diode layer and the light transmission layer, and has a third refractive index less than the second refractive index.