Abstract:
A re-reconfigurable built-in antenna of a portable terminal is provided. The antenna includes an antenna radiator having a feeding pad electrically connected to a feeding portion of a main board of the terminal and at least one ground pad disposed in a position different from that of the feeding pad for selectively establishing an electrical connection to a ground portion of the terminal, and a switching element, commonly connected to the at least one ground pad of the antenna radiator, for selectively establishing an electrical connection to the ground portion by a switching operation. The antenna radiator changes a shape of the antenna radiator by using the selective electrical connection of the ground portion so as to have various operational frequency bands and radiation properties.
Abstract:
A test fixture with hand simulation for securing a wireless terminal during a performance test is provided. The test fixture includes first and second dielectric parts adjustably spaced apart to adjust a distance of a housing space therebetween within which the wireless terminal is securable. The first and second dielectric parts simulating respective portions of a human hand holding the wireless terminal. The housing space is adjusted according to a size of the wireless terminal by adjusting a distance between portions of the first and second dielectric parts.
Abstract:
A built-in antenna for an electronic device is provided. The built-in antenna includes a substrate, a 1st antenna radiator with at least two radiating portions, a 2nd antenna radiator, and a switching means. The substrate has a conductive area and a non-conductive area. The 2nd antenna radiator is arranged within the non-conductive area of the substrate and fed by a Radio Frequency (RF) end of the substrate. The 2nd antenna radiator is configured to operate at a band different from at least one operating band of the 1st antenna radiator, and is fed by the RF end in a position adjacent the 1st antenna radiator. The switching means switches to selectively feed the 1st antenna radiator and the 2nd antenna radiator.
Abstract:
A built-in antenna for an electronic device is provided. The built-in antenna includes a substrate, a 1st antenna radiator with at least two radiating portions, a 2nd antenna radiator, and a switching means. The substrate has a conductive area and a non-conductive area. The 2nd antenna radiator is arranged within the non-conductive area of the substrate and fed by a Radio Frequency (RF) end of the substrate. The 2nd antenna radiator is configured to operate at a band different from at least one operating band of the 1st antenna radiator, and is fed by the RF end in a position adjacent the 1st antenna radiator. The switching means switches to selectively feed the 1st antenna radiator and the 2nd antenna radiator.
Abstract:
An antenna device that uses an exterior metal frame is provided. The antenna includes a Printed Circuit Board (PCB); a plurality of segment-type exterior metal frames spaced apart from the PCB; a feeding portion connected to one metal frame of the plurality of segment-type exterior metal frames; and a slit located between the PCB and the one metal frame, wherein the one metal frame fed through the feeding portion operates with radiation, or the slit operates with radiator, or another exterior metal frame fed through the feeding portion operates with radiation.
Abstract:
A built-in antenna device for an electronic device for communication used in a multi-band is provided. The built-in antenna device includes a PCB, a first antenna radiator disposed on the PCB, and a second antenna radiator which has the same power feeding point as the first antenna radiator and is disposed at a housing of the electronic device, wherein the first antenna radiator and the second antenna radiator are configured to operate at different frequency bands.