Abstract:
System for positioning a device for wireless communication in a measurement environment, the system comprises a holding device (2) and a support structure (3) for positioning the holding device (2). The holding device (2) comprises a holding means (4) for holding the device for wireless communication. The outer surface of the holding device (2) surrounds or mostly surrounds the holding means (4).
Abstract:
A system for testing a communications device includes a portable wireless communications device comprising a transmitter for transmitting an RF signal. A monitoring device receives the RF signals from the portable wireless communications device and analyzes the RF signals to determine total radiated power emitted from the transmitter. An adaptive antenna equivalent circuit is coupled to the transmitter. A connection line extends between the adaptive antenna equivalent circuit and the monitoring device. The adaptive antenna equivalent circuit has an equivalent antenna impedance matched to the portable wireless communications device and the connection line and monitoring device based on transmit frequency to ensure that total radiated power of the RF signals is transmitted from the transmitter to the monitoring device.
Abstract:
An elongate probe of at least 2 feet in length for alerting a user to the presence of electrical energy includes an antenna to sense radiated electrical energy and an indicator to alert a user when activated. Circuitry determines when the sensed electrical energy meets a user adjustable threshold and activates the indicator when the sensed electrical energy meets the user adjustable threshold. An adjustor allows for selecting the user adjustable threshold.
Abstract:
The invention relates to a device (10) for determining at least one characteristic of the electromagnetic radiation of an object being tested, and to a probe network (100), characterized in that it comprises a means (200) for sliding said probe network (100) on itself with a relative offset between the probe network (100) and the object being tested, that is higher than the pitch of the probe network (100) in order to carry out measurements along a plurality of relative positions of the probe network (100) and the object being tested, and to access specific regions of the object being tested; means are provided for positioning, adjusting and aligning the probe network (100) relative to the object being tested in order to move towards/come to/fit onto the object being tested, and means are provided for the mechanical scanning of the probe network around or in front of the object being tested in order to carry out measurements along spherical, cylindrical or planar shapes.
Abstract:
Embodiments include an anechoic chamber lined with absorber to absorb electromagnetic energy incident upon the absorber and reflector edge interfaces. The chamber comprises a reflector to reflect waves from a source to form a substantially plane wave field in a test zone within the chamber. In some embodiments, the outer periphery of the reflector extends to the interior walls, floor and ceiling of the chamber. The outer periphery of the reflector is embedded in the absorber in some embodiments.
Abstract:
A system for testing a communications device includes a portable wireless communications device comprising a transmitter for transmitting an RF signal. A monitoring device receives the RF signals from the portable wireless communications device and analyzes the RF signals to determine total radiated power emitted from the transmitter. An adaptive antenna equivalent circuit is coupled to the transmitter. A connection line extends between the adaptive antenna equivalent circuit and the monitoring device. The adaptive antenna equivalent circuit has an equivalent antenna impedance matched to the portable wireless communications device and the connection line and monitoring device based on transmit frequency to ensure that total radiated power of the RF signals is transmitted from the transmitter to the monitoring device.
Abstract:
A measurement system is provided. The measurement system comprises a device under test, at least two measurement antennas, and a reflector. In this context, the reflector comprises at least two separate curved surfaces in the same physical entity in order to generate separate plane waves corresponding to the at least two measurement antennas. The reflector is configured in such a manner that the separate plane waves converge in a quiet-zone comprising the device under test.
Abstract:
Various embodiments for detecting a high Intensity radiated field (HIRF) in a line replaceable unit are provided. In an embodiment, the internal detector comprises a receiving means for receiving HIRF and generating an AC signal proportional to the HIRF, an RF filter configured to sample the AC signal to create a DC signal; and a detecting section configured to compare the DC signal with a threshold and output a result of the comparison to a built-in test section. The internal detector may be used to test EMI filter pin connectors of a closed line replaceable unit.
Abstract:
Various embodiments for detecting a high Intensity radiated field (HIRF) in a line replaceable unit are provided. In an embodiment, the internal detector comprises a receiving means for receiving HIRF and generating an AC signal proportional to the HIRF, an RF filter configured to sample the AC signal to create a DC signal; and a detecting section configured to compare the DC signal with a threshold and output a result of the comparison to a built-in test section. The internal detector may be used to test EMI filter pin connectors of a closed line replaceable unit.
Abstract:
A DSL device performs a frame check sequence operation in a digital signal processor (DSP), i.e., layer one of the OSI seven layer model, heretofore performed only in layer two of the OSI seven layer model. Performing the layer two framing and calculating the frame check sequence in the DSP allows the DSP to use the layer two error detection results, and optionally, the mean squared error vector, to more accurately determine whether to update adaptive receiver parameters.