Abstract:
A method of processing signals from an image sensor outputting signals from rows of pixels in the image sensor having optical signals, outputting signals from rows of pixels in the image sensor not having optical signals, and correcting the signals from the rows of pixels having optical signals based on the signals corresponding to the rows of pixels not having optical signals.
Abstract:
A pixel array includes an array of pixels to receive light, a first pixel to be blocked from receiving the light, and a circuit to adjust signals output from pixels in the array based on a signal from the first pixel. The signals output from the pixels in the array include a first error value. The circuit reduces the first error value in the signals from the pixels in the array based on the signal from the first pixel. The circuit may also reduce a second error value in the signals output from the pixels in the array based on a signal from a second pixel. The first and second pixels may be outside of the pixel array. The first and second error values may be storage diode leakage value and a dark current value.
Abstract:
An image sensor is provided including a pixel array, a correlated double sampling (CDS) unit, an analog-digital converting (ADC) unit, a control unit, and an overflow power voltage control unit. The pixel array includes at least one unit pixel that generates accumulated charges corresponding to incident light in a photoelectric conversion period and outputs an analog signal based on the accumulated charges in a readout period. The CDS unit generates an image signal by performing a CDS operation on the analog signal. An ADC unit converts the image signal into a digital signal. A control unit controls the pixel array, the CDS unit, and the ADC unit. An overflow power voltage control unit controls an overflow power voltage to have a low voltage level in the photoelectric conversion period and controls the overflow power voltage to have a high voltage level in the readout period.
Abstract:
Provided are an image sensor and a method of manufacturing the same. The method may include forming a photo-electric conversion region and a charge storage region in a semiconductor layer; forming a transistor on a front surface of the semiconductor layer; forming a recess by etching a portion of the semiconductor layer between the charge storage region and a rear surface of the semiconductor layer; and forming on a bottom surface of the recess a shield film that blocks light incident on the charge storage region.
Abstract:
A linear-logarithmic image sensor includes a pixel array, a signal generation unit, and a control unit. The pixel array includes at least one unit pixel that generates a leakage signal corresponding to leakage photo-charges and that sequentially generates a first analog signal corresponding to a portion of accumulated photo-charges and a second analog signal corresponding to a whole of the accumulated photo-charges by resetting a floating diffusion node and transferring the accumulated photo-charges from a storage node to the floating diffusion node in response to first and second transfer control signals that are sequentially activated. The signal generation unit includes at least one signal generation block that generates a final analog signal based on the leakage signal, the first analog signal, and the second analog signal. The control unit controls the pixel array and the signal generation unit.
Abstract:
A linear-logarithmic image sensor includes a pixel array, a signal generation unit, and a control unit. The pixel array includes at least one unit pixel that generates a leakage signal corresponding to leakage photo-charges and that sequentially generates a first analog signal corresponding to a portion of accumulated photo-charges and a second analog signal corresponding to a whole of the accumulated photo-charges by resetting a floating diffusion node and transferring the accumulated photo-charges from a storage node to the floating diffusion node in response to first and second transfer control signals that are sequentially activated. The signal generation unit includes at least one signal generation block that generates a final analog signal based on the leakage signal, the first analog signal, and the second analog signal. The control unit controls the pixel array and the signal generation unit.