Abstract:
An interface chip includes a command decoder configured to decode a command included in data input/output signals based on a clock signal, clock masking circuitry configured to generate a masking clock signal including an edge corresponding to a first edge among first to n-th edges of the clock signal (n being an integer of 2 or more), clock latency circuity configured to transmit, to an external chip, a latency clock signal including edges corresponding to the second to n-th edges of the clock signal, chip select circuitry configured to generate a chip select signal based on an address included in the data input/output signals and the masking clock signal, and chip enable control circuitry configured to receive a chip enable signal indicating a channel for the data input/output signals and transmit the chip enable signal to the external chip based on the chip select signal.
Abstract:
A synapse array based on a static random access memory (SRAM), a pulse shaper circuit, and a neuromorphic system are provided. The synapse array includes a plurality of synapse circuits. At least one synapse circuit among the plurality of synapse circuits includes at least one bias transistor and at least two cut-off transistors, and the at least one synapse circuit is configured to charge a membrane node of a neuron circuit connected with the at least one synapse circuit using a sub-threshold leakage current that passed through the at least one bias transistor.
Abstract:
A nonvolatile memory device includes a plurality of latch groups, an address controller, an encoder, and a buffer. The address controller controls an input address and an output address to indicate one of the plurality of latch groups. The encoder receives sector data from a latch group corresponding to the output address among the plurality of latch groups and also compresses the received sector data. The buffer stores the compressed sector data. Among the plurality of latch groups, the compressed sector data stored in the buffer is overwritten in a latch group corresponding to the input address.
Abstract:
An interface chip includes a command decoder configured to decode a command included in data input/output signals based on a clock signal, clock masking circuitry configured to generate a masking clock signal including an edge corresponding to a first edge among first to n-th edges of the clock signal (n being an integer of 2 or more), clock latency circuity configured to transmit, to an external chip, a latency clock signal including edges corresponding to the second to n-th edges of the clock signal, chip select circuitry configured to generate a chip select signal based on an address included in the data input/output signals and the masking clock signal, and chip enable control circuitry configured to receive a chip enable signal indicating a channel for the data input/output signals and transmit the chip enable signal to the external chip based on the chip select signal.