Abstract:
An interface circuit includes: a buffer circuit configured to receive an input signal and to generate an output signal having a delay time, the delay time being determined based on a current level of a bias current and a voltage level of a power supply voltage; and a bias generation circuit configured to vary a voltage level of a bias control voltage so that the delay time is constant by compensating for a change in the voltage level of the power supply voltage, the bias generation circuit being further configured to provide the bias control voltage to the buffer circuit.
Abstract:
A nonvolatile memory device includes a first pin that receives a first signal, a second pin that receives a second signal, third pins that receive third signals, a fourth pin that receives a write enable signal, a memory cell array, and a memory interface circuit that obtains a command, an address, and data from the third signals in a first mode and obtains the command and the address from the first signal and the second signal and the data from the third signals in a second mode. In the first mode, the memory interface circuit obtains the command from the third signals and obtains the address from the third signals. In the second mode, the memory interface circuit obtains the command from the first signal and the second signal and obtains the address from the first signal and the second signal.
Abstract:
A semiconductor device includes an internal clock generation circuit configured to generate an internal clock; a plurality of unit circuits configured to have a first unit circuit and a second unit circuit operating while being synchronized with an internal clock; a plurality of transfer circuits including a first transfer circuit configured to provide a first transfer path having a first delay time, and a second transfer circuit configured to provide a second transfer path having a second delay time different from the first delay time; and a delay compensation circuit configured to compare a first clock input to the first unit circuit through the first transfer path with a second clock input to the second unit circuit through the second transfer path, and to adjust the second delay time so that the adjusted second delay time matches the first delay time.
Abstract:
A parameter monitoring circuit includes a code generation circuit configured to generate a first code, to which a first offset is applied, and a second code, to which a second offset is applied; a parameter adjustment circuit configured to generate a first parameter and a second parameter by respectively applying the first code and the second code to a current parameter; a comparator circuit configured to generate a first comparison result and a second comparison result, the first comparison result indicating a comparison result between the first parameter and a reference parameter value, and the second comparison result indicating a comparison result between the second parameter and the reference parameter value; and a parameter error detection circuit configured to detect an error in the current parameter, based on the first comparison result and the second comparison result.
Abstract:
A memory system may include a nonvolatile memory device and a controller. The nonvolatile memory device may include a data area and a device information area, the device information area being inaccessible accessed by a host. The controller may be configured to perform the training operation with respect to a data signal transmitted to or received from the nonvolatile memory device based on training information stored in the device information area. The controller may be configured to select one of a first training operation and a second training operation based on an identification code of the training information, and to perform the selected one of the first training operation based on a rooted training code generated by the controller and the second training operation based on a dynamic training code of the training information, the second training operation including performing a fewer number of searches than the first training operation.
Abstract:
A high voltage switch of a nonvolatile memory device includes a depletion type NMOS transistor configured to switch a second driving voltage in response to an output signal of the high voltage switch; at least one inverter configured to convert a voltage of an input signal of the high voltage switch into a first driving voltage or a ground voltage, wherein the first and second driving voltages are received from an external device; and a PMOS transistor configured to transfer the second driving voltage provided to a first terminal of the PMOS transistor from the depletion type NMOS transistor to a second terminal of the PMOS transistor as the output signal in response to an output of the at least one inverter, wherein the output of the at least one inverter is transferred to a gate terminal of the PMOS transistor.
Abstract:
A memory device includes at least one bank including at least a first sub-bank and a second sub-bank disposed in a wordline direction. The first sub-bank may include a normal data region connected to a plurality of first wordlines and storing normal data, the second sub-bank may include a metadata region connected to a plurality of second wordlines and storing metadata corresponding to the normal data, the plurality of first wordlines may match the plurality of second wordlines to form a plurality of wordline pairs, and the first sub-bank and the second sub-bank may share a row hammer region storing a number of access times to the plurality of wordline pairs.
Abstract:
A memory device includes a memory cell array configured to store data; and a data output circuit configured to transmit status data to an external device through at least one data line in a latency period in response to a read enable signal received from the external device and transmit the data read from the memory cell array to the external device through the at least one data line in a period subsequent to the latency period.
Abstract:
A storage device includes NVM package and a controller connected to the NVM package through a channel and controlling operation of the NVM package. The NVM package includes an interface chip, first NVM devices connected to the interface chip through a first internal channel and second NVM devices connected to the interface chip through a second internal channel. The interface chip selects the first internal channel in response to an operation request received from the controller and connects the first internal channel to the channel. The interface chip also determines whether retraining is necessary in relation to the second internal channel and transmits a retraining request to the controller when retraining is necessary.
Abstract:
A nonvolatile memory device includes a first pin that receives a first signal, a second pin that receives a second signal, third pins that receive third signals, a fourth pin that receives a write enable signal, a memory cell array, and a memory interface circuit that obtains a command, an address, and data from the third signals in a first mode and obtains the command and the address from the first signal and the second signal and the data from the third signals in a second mode. In the first mode, the memory interface circuit obtains the command from the third signals and obtains the address from the third signals. In the second mode, the memory interface circuit obtains the command from the first signal and the second signal and obtains the address from the first signal and the second signal.