Abstract:
Provided is a method for projection and back-projection for method and apparatus for image processing. The method for projection and back-projection includes the steps of: projecting the center of a detector cell included in a detection unit onto a common axis; mapping the boundaries of pixels in a pixel grid onto the common axis; projecting the center of the detector cell included in the detection unit onto the set common axis; and determining a pixel value on the basis of the step for mapping the boundaries of pixels onto the set common axis.
Abstract:
Provided are a method and apparatus for providing medical information. The method includes obtaining diagnostic information related to an object, setting an information providing area on which the diagnostic information is to be displayed on a console room window, the console room window being a transparent display unit, and displaying the diagnostic information on the information providing area of the console room window.
Abstract:
A method for controlling a medical device is provided including: acquiring identification information of a patient; acquiring patient information and diagnostic information based on the identification information; and changing a state of the medical device based on the patient information and the diagnostic information.
Abstract:
An image processing apparatus includes: an image receiver which receives a predetermined image obtained by photographing a fetus; and a controller which detects a head region and a torso region of the fetus from the predetermined image, and which models a shape of the fetus by using at least one of a first contoured shape corresponding to the detected head region, a second contoured shape corresponding to the detected torso region, a first axis that is the central axis of the detected head region, and a second axis that is the central axis of the detected torso region, to model the fetus so that biometric data of the fetus can be easily measured.
Abstract:
Disclosed is a method of encoding a video, the method including: splitting a current picture into at least one maximum coding unit; determining a coded depth to output a final encoding result according to at least one split region obtained by splitting a region of the maximum coding unit according to depths, by encoding the at least one split region, based on a depth that deepens in proportion to the number of times the region of the maximum coding unit is split; and outputting image data constituting the final encoding result according to the at least one split region, and encoding information about the coded depth and a prediction mode, according to the at least one maximum coding unit.
Abstract:
An image encoding method is provided, in which image data divided into basic blocks is classified in units of groups and subgroups, wherein each group comprises at least one basic block and each subgroup comprises at least one basic block and is included in each group; an encoding mode for a predetermined group is determined in order to encode the predetermined group, wherein the encoding mode represents a mode for encoding data included in the predetermined group in units of one data processing unit selected from a group, a subgroup, and a basic block; and the data of the predetermined group is encoded according to the determined encoding mode. Detailed operations in the image encoding method are performed in consideration of the encoding mode of the group.
Abstract:
A method of obtaining an X-ray image, the method including: obtaining a first image of an object; receiving a determination whether the first image includes an entirety of a region of interest (ROI); and obtaining a second image of the object, the second image including a portion of the ROI which is absent in the first image.
Abstract:
Disclosed is a method of encoding a video, the method including: splitting a current picture into at least one maximum coding unit; determining a coded depth to output a final encoding result according to at least one split region obtained by splitting a region of the maximum coding unit according to depths, by encoding the at least one split region, based on a depth that deepens in proportion to the number of times the region of the maximum coding unit is split; and outputting image data constituting the final encoding result according to the at least one split region, and encoding information about the coded depth and a prediction mode, according to the at least one maximum coding unit.
Abstract:
Disclosed is a method of encoding a video, the method including: splitting a current picture into at least one maximum coding unit; determining a coded depth to output a final encoding result according to at least one split region obtained by splitting a region of the maximum coding unit according to depths, by encoding the at least one split region, based on a depth that deepens in proportion to the number of times the region of the maximum coding unit is split; and outputting image data constituting the final encoding result according to the at least one split region, and encoding information about the coded depth and a prediction mode, according to the at least one maximum coding unit.
Abstract:
Provided are an apparatus and a method for processing a radiograph which is capable of precisely detecting a region of interest. The apparatus includes: an inputter that outputs an input image obtained by irradiating radioactive rays; and a line detector that performs a Hough transform on the input image, senses at least one edge line based on the Hough-transformed input image, performs a Radon transform in a region in which the at least one edge line is sensed, and obtains an edge line of the at least one edge line as a first collimation line one based on a result of the Radon transform.