Abstract:
The ABB blocks 332, 334, 336, and 318 are configured to process the I/Q signals corresponding to the first or the second HB independently or the I/Q signals corresponding to the LB in cooperation by two. In detail, the first ABB I block 332 and the first ABB Q block 334 operate independently in the 3G/4G mode but they are configured to process the I signal (or Q signal) of the LB in the 2G mode. Likewise, the second ABB Q block 336 and the second ABB I block 318 operate independently in the 3G/4G mode but they are configured to process the Q signal (or I signal) of the LB in the 2G mode. The first ABB I/Q blocks 332 and 334 and the second ABB I/Q blocks 336 and 318 are arranged symmetrically to processing the I/Q signals cooperatively in the 2G mode. In detail, the second ABB Q block 336 is arranged close to the first ABB Q block 334 such that the capacitor regions included in the first ABB I/Q blocks 332 and 334 are connected to each other and the capacitor regions included in the second ABB I/Q blocks 336 and 338 are connected to each other.
Abstract:
A method of operating an electronic device, an electronic device, and a chip set are provided. The method includes detecting a generation of an event based on at least one of a signal received externally and an internal operation, by the electronic device including a cellular communication module, a first short range wireless communication module and a second short range wireless communication module; determining at least one state of a connection between the electronic device and a first external electronic device that has been connected to the electronic device using the first short range wireless communication module, by the electronic device; and transmitting a signal related to the event, using at least one of the cellular communication module, the first short range wireless communication module and the second short range wireless communication module, based on at least one of the at least one state of the connection between the electronic device and the first external electronic device, by the electronic device.
Abstract:
The present invention relates to a digital-analog conversion method and device for adjusting a reference current to be used in a digital-analog conversion, by using a common mode feedback device, and the digital-analog conversion method of the present invention comprises the steps of: generating a reference current by receiving a reference voltage; converting a digital signal into an analog signal by receiving the generated reference current; detecting a common mode voltage, which is the average value of a both-end voltage of the converted analog signal; comparing the detected common mode voltage with the reference voltage; generating a feedback signal on the basis of the comparison result; and adjusting the reference current according to the generated feedback signal.
Abstract:
An analog amplifier for amplifying an analog signal and an analog filter is provided. In particular, an apparatus and method for controlling gain and cutoff frequency of the variable gain amplifier and the variable cutoff frequency filter that is capable of changing the gain and cutoff frequency are provided. The variable resistor includes a plurality of resistor segments in the variable resistor and, when a plurality of resistance candidates for the variable resistor is arranged in order of size, the resistance candidates form a geometric series.