Abstract:
A method of amplifying RNA in a sample and a method of amplifying a pool of RNA is provided. Gene loss and amplification bias may be reduced using the methods. Also, directionality may be preserved in the amplified RNA. The methods may be applied in sequence analysis as well as in general molecular diagnostic areas.
Abstract:
Provided is a polynucleotide including, from the 3′ terminus of the polynucleotide to the 5′ terminus of the polynucleotide, a first region including a nucleotide sequence complementary to a nucleotide sequence of a portion of a target nucleic acid; a second region including a nucleotide sequence identical to a nucleotide sequence of a portion of the target nucleic acid; and a third region including a nucleotide sequence that self-hybridizes to form a stem-loop structure, and compositions, kits, and methods related thereto.
Abstract:
A polynucleotide comprising a first region the 5′ end of which is complementary to a portion of a target nucleic acid, a cleavable second region, a third region having a stem-loop structure, and a fourth region complementary to the 3′ end of the first region, and use of the polynucleotide, as well as a composition comprising two such polynucleotides each of which hybridize different strands of a double-stranded target nucleic acid, and methods and kits using the same for amplifying targets.
Abstract:
A polynucleotide comprising a first region the 5′ end of which is complementary to a portion of a target nucleic acid, a cleavable second region, a third region having a stem-loop structure, and a fourth region complementary to the 3′ end of the first region, and use of the polynucleotide, as well as a composition comprising two such polynucleotides each of which hybridize different strands of a double-stranded target nucleic acid, and methods and kits using the same for amplifying targets.
Abstract:
A method for measuring blood glucose levels by a portable terminal using a strip module is provided. The strip module includes a dye pad having a color that changes in response to a sample applied to the dye pad. The strip module also includes a transparent strip having a first side and a second side. The first side is opposite the second side. The dye pad is mounted on the first side of the transparent strip, and the transparent strip reflects light provided from a light source of a portable terminal located adjacent to the second side and transmits the light to the dye pad.
Abstract:
A method for measuring blood glucose levels by a portable terminal using a strip module is provided. The strip module includes a dye pad having a color that changes in response to a sample applied to the dye pad. The strip module also includes a transparent strip having a first side and a second side. The first side is opposite the second side. The dye pad is mounted on the first side of the transparent strip, and the transparent strip reflects light provided from a light source of a portable terminal located adjacent to the second side and transmits the light to the dye pad.
Abstract:
Methods of labeling and detecting a target nucleic acid by incubating a target nucleic acid with a terminal transferase to extend a terminus of the target nucleic acid and provide an extended region; hybridizing the extended region of the target nucleic acid with a template polynucleotide having a nucleotide sequence complementary to the extended region to obtain a hybridization product; and incubating the hybridization product with a nucleic acid polymerase and either a deoxynucleotide triphosphate (dNTP) having a detectable label or nucleotide triphosphate (NTP) having a detectable label to further extend the extended target nucleic acid.