Abstract:
An touchscreen apparatus includes pixel rows including pixels configured to display an image, a touch-sensing unit configured to sense a physical touch and a light-sensing unit configured to sense incident light, the touch-sensing unit and the light-sensing unit being between two adjacent pixel rows and configured to operate based on first and second gate signals, a first sensor gate line connected to the light-sensing unit and the touch-sensing unit and configured to provide the first gate for activating the light-sensing unit and resetting the touch-sensing unit, a second sensor gate line connected to both the light-sensing unit and the touch-sensing unit and configured to provide the second gate signal for activating the touch-sensing unit and resetting the light-sensing unit, and a reset circuit configured to provide a common voltage to the pixels based on the operation of at least one of the light-sensing unit and the touch-sensing unit.
Abstract:
A radiation detector may include: a first photoconductor layer including a plurality of photosensitive particles; and/or a second photoconductor layer on the first photoconductor layer, and including a plurality of crystals obtained by crystal-growing photosensitive material. At least some of the plurality of photosensitive particles of the first photoconductor layer may fill gaps between the plurality of crystals of the second photoconductor layer. A method of manufacturing a radiation detector may include: forming a first photoconductor layer by applying paste, including solvent mixed with a plurality of photosensitive particles, to a first substrate; forming a second photoconductor layer by crystal-growing photosensitive material on a second substrate; pressing the crystal-grown second photoconductor layer on the first photoconductor layer that is applied to the first substrate; and/or removing the solvent in the first photoconductor layer via a drying process.