Luminescent nanostructure, and color conversion panel and electronic device including the same

    公开(公告)号:US12195656B2

    公开(公告)日:2025-01-14

    申请号:US17687453

    申请日:2022-03-04

    Abstract: A color conversion panel that includes a color conversion layer including two or more color conversion regions, and optionally, a partition wall defining the regions of the color conversion layer, and a display device including the color conversion panel. The color conversion region includes a first region corresponding to a first pixel, and the first region includes a first composite including a matrix and a plurality of luminescent nanostructures dispersed in the matrix. The luminescent nanostructures include a first semiconductor nanocrystal including a Group III-V compound and a second semiconductor nanocrystal including a zinc chalcogenide. The Group III-V compound includes indium, phosphorus, and optionally, zinc or gallium, or zinc and gallium, and the zinc chalcogenide includes zinc, selenium, and sulfur. The luminescent nanostructures further include aluminum and chlorine, and a mole ratio of aluminum to sulfur (Al:S) is less than about 0.15:1, a mole ratio of chlorine to sulfur (Cl:S) is less than about 0.1:1, and a mole ratio of sulfur to selenium (S:Se) is greater than or equal to about 2:1. The luminescent nanostructures don not include cadmium.

    Image sensors and electronic devices

    公开(公告)号:US11616092B2

    公开(公告)日:2023-03-28

    申请号:US17097329

    申请日:2020-11-13

    Abstract: An image sensor may include a first photo-sensing device on a semiconductor substrate and configured to sense light of a first wavelength spectrum, and second and third photo-sensing devices integrated in the semiconductor substrate and configured to sense light of a second and third wavelength spectrum, respectively. The first photo-sensing device may overlap each of the second and third photo-sensing devices in a thickness direction of the semiconductor substrate. The second and third photo-sensing devices do not overlap in the thickness direction and each have an upper surface, a lower surface, and a doped region therebetween. The third photo-sensing device includes an upper surface deeper further from the upper surface of the semiconductor substrate than the upper surface of the second photo-sensing device and a doped region thicker than the doped region of the second photo-sensing device. The image sensor may omit the first photo-sensing device.

    Sensors and electronic devices
    7.
    发明授权

    公开(公告)号:US11552212B2

    公开(公告)日:2023-01-10

    申请号:US17306271

    申请日:2021-05-03

    Abstract: A sensor includes a first electrode and a second electrode, and a photo-active layer between the first electrode and the second electrode. The photo-active layer includes a light absorbing semiconductor configured to form a Schottky junction with the first electrode. The photo-active layer has a charge carrier trapping site configured to capture photo-generated charge carriers generated based on the light absorbing semiconductor absorbing incident light that enters at least the photo-active layer at a position adjacent to the first electrode. The sensor is configured to have an external quantum efficiency (EQE) that is adjusted based on a voltage bias being applied between the first electrode and the second electrode.

    Sensors and electronic devices
    9.
    发明授权

    公开(公告)号:US11855236B2

    公开(公告)日:2023-12-26

    申请号:US18151770

    申请日:2023-01-09

    CPC classification number: H01L31/1121 H01L31/0256 H01L31/022408

    Abstract: A sensor includes a first electrode and a second electrode, and a photo-active layer between the first electrode and the second electrode. The photo-active layer includes a light absorbing semiconductor configured to form a Schottky junction with the first electrode. The photo-active layer has a charge carrier trapping site configured to capture photo-generated charge carriers generated based on the light absorbing semiconductor absorbing incident light that enters at least the photo-active layer at a position adjacent to the first electrode. The sensor is configured to have an external quantum efficiency (EQE) that is adjusted based on a voltage bias being applied between the first electrode and the second electrode.

    Photoelectric conversion device, organic sensor and electronic device

    公开(公告)号:US11631819B2

    公开(公告)日:2023-04-18

    申请号:US17157044

    申请日:2021-01-25

    Abstract: Disclosed are a photoelectric conversion device and an organic sensor and an electronic device including the same. The photoelectric conversion device includes a first and a second electrode, a photoelectric conversion layer between the first and the second electrode and configured to absorb light in at least one portion of a wavelength spectrum and to convert the absorbed light into an electric signal, and a buffer layer between the second electrode and the photoelectric conversion layer and including a mixture of at least two materials. The mixture includes a first and a second material. The first material has an energy bandgap of at least about 3.2 eV and a HOMO energy level of at least about 6.0 eV. The second material has an energy bandgap of less than or equal to about 2.8 eV and a HOMO energy level of at least about 6.0 eV.

Patent Agency Ranking