Abstract:
An electronic device and a method are provided. The electronic device includes a communication module, a touch screen display, a processor electrically connected with the communication module and the touch screen display, and a memory electrically connected with the processor. The memory is configured to stores an application program configured to transmit and receive data to/from an external electronic device using the communication module, and instructions to enable the processor to display a user interface of the application program in the touch screen display when the application program is executed. The user interface includes a first area that displays at least one of an image and text that is associated with a user who is related to the external electronic device, and a second area that displays data that is shared with the external electronic device, and the first area overlaps at least a part of the second area.
Abstract:
The present invention is for controlling an input dimension in an electronic device, and an operation method of the electronic device includes: an operation for measuring the distance between the electronic device and the ground; and operation for transmitting, to another electronic device, first information about two-dimensional coordinates representing the position of the electronic device, when the distance is shorter than a threshold value; and an operation for transmitting, to the other electronic device, second information about three-dimensional coordinates representing the position of the electronic device, when the distance is not shorter than the threshold value.
Abstract:
The nonvolatile memory device using a variable resistance material and a method for driving the same are provided. A first clamping unit connected between a resistance memory cell and a first sensing node to provide a first clamping bias to the resistance memory cell. The first clamping bias changes over time. A first compensation unit provides a compensation current to the first sensing node. A first sense amplifier is connected to the first sensing node to sense a level change of the first sensing node. In response to if first data stored in the resistance memory cell, an output value of the first sense amplifier transitions to a different state after a first amount of time from a time point from where the first clamping bias starts. In response to second data that is different from the first data stored in the resistance memory cell, the output value of the first sense amplifier transitions to the different state after a second amount of time that is different from the first amount of time from the time point from where the first clamping bias starts.
Abstract:
The nonvolatile memory device using a variable resistance material and a method for driving the same are provided. A first clamping unit connected between a resistance memory cell and a first sensing node to provide a first clamping bias to the resistance memory cell. The first clamping bias changes over time. A first compensation unit provides a compensation current to the first sensing node. A first sense amplifier is connected to the first sensing node to sense a level change of the first sensing node. In response to if first data stored in the resistance memory cell, an output value of the first sense amplifier transitions to a different state after a first amount of time from a time point from where the first clamping bias starts. In response to second data that is different from the first data stored in the resistance memory cell, the output value of the first sense amplifier transitions to the different state after a second amount of time that is different from the first amount of time from the time point from where the first clamping bias starts.