Abstract:
Provided are a semiconductor device and a method of manufacturing the semiconductor device. In order to improve reliability by solving a problem of conductivity that may occur when an air spacer structure that may reduce a capacitor coupling phenomenon between a plurality of conductive lines is formed, there are provided a semiconductor device including: a substrate having an active region; a contact plug connected to the active region; a landing pad spacer formed to contact a top surface of the contact plug; a contact conductive layer formed to contact the top surface of the contact plug and formed in a space defined by the landing pad spacer; a metal silicide layer formed on the contact conductive layer; and a landing pad connected to the contact conductive layer in a state in which the metal silicide layer is disposed between the landing pad and the contact conductive layer, and a method of manufacturing the semiconductor device.
Abstract:
A semiconductor device includes a substrate having a conductive area, a first pattern formed on the substrate and having a contact hole through which the conductive area is exposed, and a contact plug in the contact hole. The contact plug includes first and second silicon layers. The first silicon layer, formed from a first compound including at least two silicon atoms, is formed in the contact hole to contact a top surface of the conductive area and a side wall of the first pattern. The second silicon layer, formed from a second compound including a number of silicon atoms less than the number of the silicon atoms of the first compound, is formed on the first silicon layer and fills a remaining space of the contact hole, the second silicon layer being spaced apart from the first pattern at an entrance of the contact hole.
Abstract:
A semiconductor device includes a substrate having a conductive area, a first pattern formed on the substrate and having a contact hole through which the conductive area is exposed, and a contact plug in the contact hole. The contact plug includes first and second silicon layers. The first silicon layer, formed from a first compound including at least two silicon atoms, is formed in the contact hole to contact a top surface of the conductive area and a side wall of the first pattern. The second silicon layer, formed from a second compound including a number of silicon atoms less than the number of the silicon atoms of the first compound, is formed on the first silicon layer and fills a remaining space of the contact hole, the second silicon layer being spaced apart from the first pattern at an entrance of the contact hole.