Abstract:
An electrode structure is disclosed. The electrode structure includes a first polysilicon layer doped with resistance adjustment impurities; a second polysilicon layer for adjusting grains, formed in the first polysilicon layer and doped with grain adjustment impurities; an ohmic metal layer formed on the first and second polysilicon layers; a barrier metal layer formed on the ohmic metal layer; and a metal layer formed on the barrier metal layer.
Abstract:
An electrode structure is disclosed. The electrode structure includes a first polysilicon layer doped with resistance adjustment impurities; a second polysilicon layer for adjusting grains, formed in the first polysilicon layer and doped with grain adjustment impurities; an ohmic metal layer formed on the first and second polysilicon layers; a barrier metal layer formed on the ohmic metal layer; and a metal layer formed on the barrier metal layer.
Abstract:
An electrode structure is disclosed. The electrode structure includes a first polysilicon layer doped with resistance adjustment impurities; a second polysilicon layer for adjusting grains, formed in the first polysilicon layer and doped with grain adjustment impurities; an ohmic metal layer formed on the first and second polysilicon layers; a barrier metal layer formed on the ohmic metal layer; and a metal layer formed on the barrier metal layer.
Abstract:
A semiconductor device includes a substrate having a conductive area, a first pattern formed on the substrate and having a contact hole through which the conductive area is exposed, and a contact plug in the contact hole. The contact plug includes first and second silicon layers. The first silicon layer, formed from a first compound including at least two silicon atoms, is formed in the contact hole to contact a top surface of the conductive area and a side wall of the first pattern. The second silicon layer, formed from a second compound including a number of silicon atoms less than the number of the silicon atoms of the first compound, is formed on the first silicon layer and fills a remaining space of the contact hole, the second silicon layer being spaced apart from the first pattern at an entrance of the contact hole.
Abstract:
A semiconductor device includes a substrate having a conductive area, a first pattern formed on the substrate and having a contact hole through which the conductive area is exposed, and a contact plug in the contact hole. The contact plug includes first and second silicon layers. The first silicon layer, formed from a first compound including at least two silicon atoms, is formed in the contact hole to contact a top surface of the conductive area and a side wall of the first pattern. The second silicon layer, formed from a second compound including a number of silicon atoms less than the number of the silicon atoms of the first compound, is formed on the first silicon layer and fills a remaining space of the contact hole, the second silicon layer being spaced apart from the first pattern at an entrance of the contact hole.