Abstract:
A light source module includes a heat sink having a mounting region; a light emitting device package having a first surface disposed on the mounting region of the heat sink and a second surface that is opposite to the first surface, the light emitting device package including a connection pad disposed on the second surface; a circuit board disposed on the mounting region of the heat sink and spaced apart from the light emitting device package, the circuit board including a connector and a terminal electrically connected to the connector; and a bracket disposed between the light emitting device package and the circuit board on the mounting region of the heat sink, and coupled to the heat sink, the bracket including a lead frame pressing the connection pad and the terminal to connect the connection pad and the terminal.
Abstract:
A light source assembly for a vehicle includes a frame having at least one device region; a heat radiator disposed above the at least one device region and spaced apart from the frame by a predetermined interval; a light source including at least one light emitting device disposed above the heat radiator in a position corresponding to the at least one device region; and an auxiliary heat radiator provided to the heat radiator by penetrating through the frame, thereby easily increasing and decreasing an amount of heat radiated by the heat radiator corresponding to an amount of heat generated by the light source.
Abstract:
There is provided a semiconductor light emitting device including: a heat dissipation structure including one or more of materials among a metal, a ceramic, a semiconductor, and a resin; a flexible insulating layer directly in contact with the heat dissipation structure; a conductive layer laminated on the flexible insulating layer; and a light emitting device mounted on the conductive layer, wherein the light emitting device includes a light emitting structure including a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer; and first and second electrodes connected to the first and second conductivity-type semiconductor layers, respectively, and the first electrode includes a plurality of conductive vias connected to the first conductivity-type semiconductor layer through the second conductivity-type semiconductor layer and the active layer.
Abstract:
Provided is a light source assembly including: a frame including a device region; a radiator mounted on the device region and detachable therefrom; and a light source including a light emitting device disposed at a position corresponding to the device region above the radiator.