摘要:
A Time-of-Flight (ToF)-based three-dimensional (3D) image sensor includes at least two first photogates symmetrically arranged in a central portion of a pixel, at least two first gates configured to remove an overflow charge generated in the at least two first photogates, and a first gate group. The at least two first gates are arranged symmetrically in an outer portion of the pixel. The first gate group includes a plurality of gates configured to store and transmit charges generated in the at least two first photogates. The first gate group is arranged in the outer portion of the pixel.
摘要:
A method for controlling a user interface of an apparatus to enable intuitive manipulation for an object included in an image is provided. An object with deeper depth in a rear image of the apparatus may become selectable when the user holds a user input means close to the apparatus, while an object with shallower depth in the rear image may become selectable when the user draws the user input means away from the apparatus, thereby allowing the user to intuitively select an object in the rear image.
摘要:
The image sensor includes: a semiconductor substrate having a first conductivity type and including a first surface, a second surface opposite to the first surface, and a well region adjacent to the first surface. A first vertical transfer gate and a second vertical transfer gate are spaced apart from each other and extend in a thickness direction of the semiconductor substrate from the first surface to pass through at least a part of the well region. A photoelectric conversion region has a second conductivity type, which is different from the first conductivity type, is located in the semiconductor substrate between the well region and the second surface, and overlaps the first vertical transfer gate and the second vertical transfer gate in the thickness direction of the semiconductor substrate. A wiring structure is located on the first surface of the semiconductor substrate.
摘要:
Methods, systems, and devices for guiding a subject back within the recognizable visual range of a multimedia system are described. According to one of the described methods, when it is determined that the target has left the recognizable range of the multimedia system, sensor information is acquired from a portable electronic device (or controller) the user has been using to control the multimedia system, and the acquired sensor information is used to determine where the user is, relative to the recognizable range. In one example, the user is asked to make a gesture with the portable electronic device, and the sensor information concerning that gesture is used to determine the user's relative location. In another example, the sensor information recorded at the time the user left the recognizable range is used to determine the user's relative location.
摘要:
A method and an apparatus for controlling a display in order to secure an appropriate viewing distance between a digital device and a user who is viewing the digital device is provided. Accordingly, the method determines whether an object exists within a hazardous viewing distance using a 3D camera function provided in the digital device. If it is determined that an object exists within the hazardous viewing distance, the digital device detects a face or eyes from 2D images photographed by the camera. Next, the direction of the face is determined on the basis of the detected results, and it is determined whether a user is viewing a display screen of the digital device based on the determination. If it is determined that a user is viewing a display screen of a digital device, the digital device generates a warning that the user is positioned within a hazardous viewing distance.
摘要:
A unit pixel includes a sensing transistor, a photo diode, and a reset drain region. The sensing transistor includes a reference active region, an output active region, and a gate. The gate is between the reference active region and the output active region to electrically connect the reference active region to the output active region based on a gate voltage. The reference active region and output active region are within a semiconductor substrate. The photo diode is under the gate within the semiconductor substrate. The reset drain region is within the semiconductor substrate and is electrically connected to the photo diode by the gate based on the gate voltage.
摘要:
A method for controlling a user interface of an apparatus to enable intuitive manipulation for an object included in an image is provided. An object with deeper depth in a rear image of the apparatus may become selectable when the user holds a user input means close to the apparatus, while an object with shallower depth in the rear image may become selectable when the user draws the user input means away from the apparatus, thereby allowing the user to intuitively select an object in the rear image.
摘要:
A method and apparatus for extracting three-dimensional distance information from a recognition target is provided, which enables a gesture input from a user to be correctly recognized using distance information from the recognition target, and at the same time makes it possible to efficiently save power required for detection of the gesture input. The method includes determining if a recognition target exists within a predetermined range; when the recognition target exists within the predetermined range, generating a 3D image for the recognition target; and calculating a distance to the recognition target by using the 3D image.
摘要:
A pixel array in a three-dimensional image sensor includes depth pixels and an ambient light cancellation (ALC) circuit. The depth pixels operate in response to photo control signals having different phases, and generate distance information of an object based on light reflected by the object. The ALC circuit removes an ambient light component from the reflected light, and is shared by the depth pixels. Each depth pixel includes a photoelectric conversion region, a floating diffusion region, a photo gate, and a drain gate. The photoelectric conversion region collects photo charges based on the reflected light. The floating diffusion region accumulates the photo charges. The photo gate is activated in response to one of the photo control signals. The photoelectric conversion region accumulates the photo charges when the photo gate is activated, and the photo charges in the photoelectric conversion region are released when the drain gate is activated.
摘要:
A method of recognizing motion of an object may include periodically obtaining depth data of a first resolution and two-dimensional data of a second resolution with respect to a scene using an image capturing device, wherein the second resolution is higher than the first resolution; determining a motion tracking region by recognizing a target object in the scene based on the depth data, such that the motion tracking region corresponds to a portion of a frame and the portion includes the target object; periodically obtaining tracking region data of the second resolution corresponding to the motion tracking region; and/or analyzing the motion of the target object based on the tracking region data.