Abstract:
A method for handover of User Entity (UE) by a source Base Station (BS) is provided. The method includes determining whether to handover the UE using an X2 interface, transmitting a handover request message to a target BS, the handover request message including Closed Subscriber Group (CSG) information of the target BS, and receiving a handover request acknowledgement message from the target BS, wherein the determining of whether to handover the UE using the X2 interface includes, if there is the X2 interface between the source BS and the target BS, and if the target BS does not support a CSG or the target BS supports a same CSG supported by the source BS, determining to perform the handover of the UE using the X2 interface, and obtaining the CSG information of the target BS through an X2 interface set up procedure.
Abstract:
Disclosed is a method for transmitting control information in a media access control-enhanced packet data unit (MAC-e PDU), including determining a data size of a transport format combination (TFC) selected by a user equipment (UE), including control information into the MAC-e PDU when a size of data and a header for the MAC-e PDU is shorter than the data size of the TFC, padding data of the MAC-e PDU with padding bits if a size of data including a corresponding header is shorter than the data size of the TFC, including the control information into the padding bits if the length of the padding bits is suitable for the transmission of the control information, and sending, by the UE, the MAC-e PDU including the control information to a node B.
Abstract:
Disclosed is a method for detachment of a mobile set including receiving, by a service node of a communication system, a detachment request from the mobile set, transmitting, by the service node of the communication system, a delete context request message for the mobile set to a first service node of another communication system, and transmitting, by the service node, a detachment indicator to a second service node of the another communication system, wherein the service node of the communication system is different from the service node of the another communication, wherein both the service node of the communication system and the first service node of the another communication system store context information related to the mobile set, and wherein the mobile set moves between the service node of the communication system and the first service node of the another communication system without an area updating.
Abstract:
Disclosed is a method for transmitting control information in a media access control-enhanced packet data unit (MAC-e PDU), including determining a data size of a transport format combination (TFC) selected by a user equipment (UE), including control information into the MAC-e PDU when a size of data and a header for the MAC-e PDU is shorter than the data size of the TFC, padding data of the MAC-e PDU with padding bits if a size of data including a corresponding header is shorter than the data size of the TFC, including the control information into the padding bits if the length of the padding bits is suitable for the transmission of the control information, and sending, by the UE, the MAC-e PDU including the control information to a node B.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). The embodiments of the present application provide a method and a device for routing a data packet, and a method and a device for controlling a data packet transmission. The data packet routing method includes: receiving a first message transmitted by a first node; and determining a transmission path of the data packet according to the first message. The method provided in the present application achieves that a node in a relay network can determine a condition for transmitting the data packet by using other transmission paths, thereby effectively using multiple transmission paths to implement the data packet transmission.
Abstract:
The disclosure relates to a pre-5th generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th generation (4G) communication system such as long term evolution (LTE). A method for data processing in a wireless communication network is provided. The method includes obtaining, by a first node, data, and generating, by the first node, information for self optimization according to the data.
Abstract:
The present disclosure provides a method for establishing a default radio data bearer on a secondary base station, and a corresponding master base station, secondary base station, and computer readable media. The method includes: notifying the secondary base station to establish the default radio data bearer; receiving, from the secondary base station, a notification of information about establishment of the default radio data bearer; and receiving, from the secondary base station, a notification of information about release of the default radio data bearer. The present disclosure also provides a method for data replication and data transmission performed by an entity where PDCP is located, a method for data replication performed by an entity where RLC is located, a data counting method performed by an entity where RLC is located, an entity where PDCP is located, an entity where RLC is located, and a computer readable medium.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). According to embodiments, an access and mobility management function (AMF) comprises at least one transceiver; and at least one processor, wherein the at least one processor is configured to receive, a mobility management entity (MME) for an evolved node B (eNB), a message associated with a handover required message for an inter-system handover from an evolved packet system (EPS) to 5G system (5GS) with a secondary gNB (SgNB) used as a target next generation node B (gNB), wherein the SgNB and the target gNB are co-located and the eNB is associated with the SgNB in a dual connectivity; transmit, to the target gNB, a handover request message for the inter-system handover from the EPS to 5GS with the SgNB used as the target gNB; and receive, from the target gNB, an acknowledge of the handover request message. The handover required message includes an SgNB user equipment (UE) X2 application protocol ID (SgNB UE X2AP ID) for identifying a UE over X2 interface in the SgNB. The handover request message includes the SgNB UE X2AP ID, and the SgNB UE X2AP ID is allocated at the SgNB.
Abstract:
The present disclosure provides an information configuration method, an information interaction method, and an address information update method. The information configuration method may be performed by a first node, and may include: transmitting, to a second node, a first configuration request message comprising a request for a bearer context setup; receiving, from the second node, a first configuration response message comprising a response to the bearer context setup request in the first configuration request message; and establishing a bear context based on the first configuration response message, wherein the first configuration request message comprises at least one of information related to data profile, or profile indication information.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method performed by a first node is provided, comprising determining whether direct data forwarding between a third node and a second node is available, performing direct data forwarding if the direct data forwarding is available, otherwise, performing indirect data forwarding.