Abstract:
A method operating a user equipment for avoiding paging missing in a mobile communication system is provided. The method of operating a user equipment includes performing an area update process caused by a registration area change, performing a reselection of a previous registration area after performing the area update process, and attempting to receive a paging in the previous registration area.
Abstract:
Provided is an interference cancellation method by a User Equipment (UE) in a cellular communication system. The method includes receiving a signal including a desired signal and an interference signal from at least one base station; determining a universal constellation diagram based on at least one of a transmission parameter of the desired signal and a transmission parameter of the interference signal; blindly detecting an additional transmission parameter of the interference signal using the determined universal constellation diagram; and cancelling the interference signal from the received signal using the detected additional transmission parameter.
Abstract:
A method of transmitting data in a wireless communication, by a first Base Station (BS) is provided. The method includes receiving control information including information related to transmission of a Reference Signal (RS) of at least one second BS from the at least one second BS adjacent to the first BS and transmitting data by using a preset method based on the control information when an RS transmission mode of the at least one second BS is different from an RS transmission mode of the first BS.
Abstract:
An apparatus and a method for controlling power consumption of a terminal in a wireless communication system are provided. The method includes deactivating one or more of hardware components for signal reception in a transmission interval if there is no data to be received in the transmission interval, and receiving a control signal by activating all the components in a next transmission interval.
Abstract:
An Antenna Mode Steering (AMS) method in a signal receiving apparatus using at least one antenna is provided. The method includes measuring a received signal quality of a signal received through the at least one antenna for each of antenna modes available in the signal receiving apparatus, and selecting a specific antenna mode from among the antenna modes as an antenna mode to be used in the signal receiving apparatus based on the measured received signal quality.
Abstract:
Methods, a Base Station (BS), and a User Equipment (UE) in a wireless communication system for transmitting and receiving control information are provided. The method for transmitting control information by a BS in a wireless communication system includes receiving information related to a signal transmitted by a second BS that the second BS which is a neighboring BS of the first BS, determining whether a second UE using an identical resource to that used by a first UE included in a cell of the first BS exists within a cell of the second BS based on the received information, when the second UE exists, generating control information for controlling a signal transmitted to the second UE by the second BS based on the received information, and transmitting the generated control information to the first UE through a control channel.
Abstract:
Methods, a Base Station (BS), and a User Equipment (UE) in a wireless communication system for transmitting and receiving control information are provided. The method for transmitting control information by a BS in a wireless communication system includes receiving information related to a signal transmitted by a second BS that the second BS which is a neighboring BS of the first BS, determining whether a second UE using an identical resource to that used by a first UE included in a cell of the first BS exists within a cell of the second BS based on the received information, when the second UE exists, generating control information for controlling a signal transmitted to the second UE by the second BS based on the received information, and transmitting the generated control information to the first UE through a control channel.
Abstract:
A method of quantizing an artificial neural network includes dividing an input distribution of the artificial neural network into a plurality of segments, generating an approximated density function by approximating each of the plurality of segments, calculating at least one quantization error corresponding to at least one step size for quantizing the artificial neural network, based on the approximated density function, and determining a final step size for quantizing the artificial neural network based on the at least one quantization error.
Abstract:
A method and an apparatus for link performance abstraction for a receiver employing Interference-Aware Communications (IAC) technology in a wireless communication system are provided. A method for operating a receiving apparatus for the link performance abstraction in the wireless communication system, includes receiving an Orthogonal Frequency Division Multiplexing (OFDM) over a plurality of spatial layers, splitting and post-processing the received signal based on the spatial layers, deriving a post-processing Signal-to-Interference-plus-Noise Ratio (SINR) of each spatial layer, converting the post-processing SINR of the spatial layers to a Mutual Information per coded Bit (MIB) adaptively tuned based on an instantaneous Interference-to-Signal Ratio (ISR), and estimating a Block Error Rate (BLER) from a mean of the MIB metrics of the spatial layers.
Abstract:
A method and apparatus for signaling power information in a wireless communication system are provided. A base station apparatus co-schedules a plurality of User Equipments (UEs) to at least one resource element, and transmits power information indicating transmit power values, which are allocated for the co-scheduled UEs, to the co-scheduled UEs. The power information includes first power information including information about a pilot signal power value and a transmit power value for a first UE among the co-scheduled UEs, and second power information indicating a transmit power value for each of at least one second UE except for the first UE among the co-scheduled UEs.