Abstract:
A method for searching for an access point in a local area network at an electronic device, in accordance with various embodiments, comprises: an operation for determining the moving level of the electronic device; and an operation for deciding, in accordance with the determination result of the moving level of the electronic device, whether or not an access point in the local area network is searched for. Other embodiments are possible.
Abstract:
A method for operating a terminal in a wireless communication system is provided. The method includes receiving control information masked with an identifier allocated according to a predefined rule for structural allocation, the control information being transmitted from a neighboring base station, and processing the control information by using the identifier.
Abstract:
A method of controlling a communication module by an electronic device is provided. The method includes receiving, by a second processor, a specified signal from a first processor informing that the first processor enters an inactive state from an active state, by a second processor, and controlling, by the second processor, a Wireless Fidelity (WiFi) communication function in response to the specified signal. According to an operation state of the first processor, that is, an inactive state such as a sleep state or a power off state, or an active state, a subject which processes WiFi communication is changed. Accordingly, it is possible to efficiently and continuously monitor WiFi communication data and process the WiFi communication data on an accurate period.
Abstract:
A method of transmitting data in a wireless communication, by a first Base Station (BS) is provided. The method includes receiving control information including information related to transmission of a Reference Signal (RS) of at least one second BS from the at least one second BS adjacent to the first BS and transmitting data by using a preset method based on the control information when an RS transmission mode of the at least one second BS is different from an RS transmission mode of the first BS.
Abstract:
An apparatus and a method for controlling power consumption of a terminal in a wireless communication system are provided. The method includes deactivating one or more of hardware components for signal reception in a transmission interval if there is no data to be received in the transmission interval, and receiving a control signal by activating all the components in a next transmission interval.
Abstract:
An Antenna Mode Steering (AMS) method in a signal receiving apparatus using at least one antenna is provided. The method includes measuring a received signal quality of a signal received through the at least one antenna for each of antenna modes available in the signal receiving apparatus, and selecting a specific antenna mode from among the antenna modes as an antenna mode to be used in the signal receiving apparatus based on the measured received signal quality.
Abstract:
An electronic device apparatus and method are disclosed herein. The apparatus includes a processor. The processor may execute the method, which includes detecting a first location and a movement velocity of the electronic device, estimating a second location of the electronic device based on the detected movement velocity of the electronic device, comparing the first location of the electronic device and the estimated second location of the electronic device to determine a location measurement error, and correcting the detected first location of the electronic device based on the determined location measurement error.
Abstract:
A method and an apparatus for link performance abstraction for a receiver employing Interference-Aware Communications (IAC) technology in a wireless communication system are provided. A method for operating a receiving apparatus for the link performance abstraction in the wireless communication system, includes receiving an Orthogonal Frequency Division Multiplexing (OFDM) over a plurality of spatial layers, splitting and post-processing the received signal based on the spatial layers, deriving a post-processing Signal-to-Interference-plus-Noise Ratio (SINR) of each spatial layer, converting the post-processing SINR of the spatial layers to a Mutual Information per coded Bit (MIB) adaptively tuned based on an instantaneous Interference-to-Signal Ratio (ISR), and estimating a Block Error Rate (BLER) from a mean of the MIB metrics of the spatial layers.
Abstract:
An apparatus for iteratively estimating a channel in a receiver of a wireless communication system is provided. The apparatus includes a channel estimator configured to estimate a first channel value by using a pilot symbol included in a received signal, a demodulator configured to demodulate the received signal by using the first channel value, a decoding unit configured to decode the received signal demodulated by the demodulator, a feedback determining unit configured to determine whether to iteratively estimate the channel, and a feedback device configured to feed back an input value of the decoding unit when the feedback determining unit determines to iteratively estimate the channel, wherein when the feedback determining unit determines to iteratively estimate the channel, the channel estimator estimates a second channel value by using at least one of the pilot symbol included in the received signal and a data symbol received from the feedback device.
Abstract:
A method and apparatus for signaling power information in a wireless communication system are provided. A base station apparatus co-schedules a plurality of User Equipments (UEs) to at least one resource element, and transmits power information indicating transmit power values, which are allocated for the co-scheduled UEs, to the co-scheduled UEs. The power information includes first power information including information about a pilot signal power value and a transmit power value for a first UE among the co-scheduled UEs, and second power information indicating a transmit power value for each of at least one second UE except for the first UE among the co-scheduled UEs.