Abstract:
A transdermal and/or intradermal diagnostic device comprising a combined hollow microneedle interstitial fluid (IF) extraction device and a detector can monitor biomarkers in-situ. For example, electrode transducers with optimally arrayed and designed microneedles can be combined with a suitable pumping method to determine biomarker levels in human subjects under intense physical exertion to monitor metabolic stress and fatigue. The device can perform real-time, in-situ measurements of lactate in human subjects. Monitoring of other biomarkers is straightforward.
Abstract:
An auto-injection system is having an injector, one or more sensors, and a controller, the controller activates the injector when the sensors detect a predetermined condition.
Abstract:
A microneedle device comprising a hollow microneedle protruding from the rim of an outer open holder can be used for the extraction of interstitial fluid (ISF). Dermal ISF can be extracted with the microneedle device with minimal pain and no blistering for human subjects. Extracted ISF volumes are sufficient for determining transcriptome and proteome signatures. Similar profiles in ISF, serum, and plasma samples, suggest that ISF can be a proxy for direct blood sampling. This minimally-invasive microneedle device enables real-time health monitoring applications using extracted ISF.