摘要:
A titanium alloy has high strength and superior workability and is preferably used for various structural materials for automobiles, etc. The titanium alloy is obtained by the following production method. An alloy having a structure of α′ martensite phase is hot worked at conditions at which dynamic recrystallization occurs. The working is performed at a heating rate of 50 to 800° C./second at a strain rate of 0.01 to 10/second when the temperature is 700 to 800° C. or at a strain rate of 0.1 to 10/second when the temperature is more than 800° C. and less than 1000° C. so as to provide a strain of not less than 0.5. Thus, equiaxed crystals with an average grain size of less than 1000 nm are obtained.
摘要:
An alloy having an α′ martensite which is a processing starting structure is hot worked. The alloy is heated at a temperature increase rate of 50 to 800° C./sec, and strain is given at not less than 0.5 by a processing strain rate of from 0.01 to 10/sec in a case of a temperature range of 700 to 800° C., or by a processing strain rate of 0.1 to 10/sec in a case of a temperature range of 800° C. to 1000° C. By generating equiaxial crystals having average crystal particle diameters of less than 1000 nm through the above processes, a titanium alloy having high strength and high fatigue resistant property can be obtained, in which hardness is less than 400 HV, tensile strength is not less than 1200 MPa, and static strength and dynamic strength are superior.
摘要:
An alloy having an α′ martensite which is a processing starting structure is hot worked. The alloy is heated at a temperature increase rate of 50 to 800° C./sec, and strain is given at not less than 0.5 by a processing strain rate of from 0.01 to 10/sec in a case of a temperature range of 700 to 800° C., or by a processing strain rate of 0.1 to 10/sec in a case of a temperature range of 800° C. to 1000° C. By generating equiaxial crystals having average crystal particle diameters of less than 1000 nm through the above processes, a titanium alloy having high strength and high fatigue resistant property can be obtained, in which hardness is less than 400 HV, tensile strength is not less than 1200 MPa, and static strength and dynamic strength are superior.
摘要:
A titanium alloy has high strength and superior workability and is preferably used for various structural materials for automobiles, etc. The titanium alloy is obtained by the following production method. An alloy having a structure of α′ martensite phase is hot worked at conditions at which dynamic recrystallization occurs. The working is performed at a heating rate of 50 to 800° C./second at a strain rate of 0.01 to 10/second when the temperature is 700 to 800° C. or at a strain rate of 0.1 to 10/second when the temperature is more than 800° C. and less than 1000° C. so as to provide a strain of not less than 0.5. Thus, equiaxed crystals with an average grain size of less than 1000 nm are obtained.
摘要:
A Co—Cr—Mo alloy fine wire has superior biocompatibility, corrosion resistance, wear resistance, processability, and flexibility. A manufacturing method and a planar body or the like formed by processing this fine wire. This is a fine wire of diameter of 200 micrometers or less comprising 26 to 31 weight % of Cr, 8 to 16 weight % of Mo, and the remainder of Co and inevitable impurities, in which the degree of roundness (minor diameter/major diameter) of lateral cross section is 0.6 or more, and the internal structure is uniform with the concentration ratio of high Mo concentration phase to low Mo concentration phase of 1.8 or less.
摘要:
The present invention provides a method for manufacturing a biomedical porous article wherein communicability between the pores in the porous article is ensured and a desired porosity can be easily obtained, the method comprising a plate-like thread cluster formation step in which a plate-like thread cluster is obtained by dispersing many metallic threads made of a biomedical metallic material along a flat surface and entangling them; a compressing step of compressing the plate-like thread cluster into a desired thickness; and a sintering step of sintering the plate-like thread cluster.
摘要:
The present invention provides a method for manufacturing a biomedical porous article wherein communicability between the pores in the porous article is ensured and a desired porosity can be easily obtained, the method comprising a plate-like thread cluster formation step in which a plate-like thread cluster is obtained by dispersing many metallic threads made of a biomedical metallic material along a flat surface and entangling them; a compressing step of compressing the plate-like thread cluster into a desired thickness; and a sintering step of sintering the plate-like thread cluster.
摘要:
A Co—Cr—Mo alloy with nitrogen addition composed of 26 to 35% by weight of Cr, 2 to 8% by weight of Mo, 0.1 to 0.3% by weight of N, and balance of Co is subjected to solution treatment and then subjected to isothermal aging treatment holding the alloy at 670 to 830° C. for a predetermined period of time to form a multi-phase structure composed of an ε-phase and a Cr nitride by means of an isothermal aging effect. After cooling, the alloy subjected to reverse transformation treatment in which the alloy is heated at a temperature range of 870 to 1100° C. for reverse transformation to a single γ-phase from the multi-phase structure composed of an ε-phase and a Cr nitride.
摘要:
A Co—Cr—Mo alloy with nitrogen addition composed of 26 to 35% by weight of Cr, 2 to 8% by weight of Mo, 0.1 to 0.3% by weight of N, and balance of Co is subjected to solution treatment and then subjected to isothermal aging treatment holding the alloy at 670 to 830° C. for a predetermined period of time to form a multi-phase structure composed of an ε-phase and a Cr nitride by means of an isothermal aging effect. After cooling, the alloy subjected to reverse transformation treatment in which the alloy is heated at a temperature range of 870 to 1100° C. for reverse transformation to a single γ-phase from the multi-phase structure composed of an ε-phase and a Cr nitride.
摘要:
Provided is a Co—Ni-based alloy in which a crystal is easily controlled, a method of controlling a crystal of a Co—Ni-based alloy, a method of producing a Co—Ni-based alloy, and a Co—Ni-based alloy having controlled crystallinity. The Co—Ni-based alloy includes Co, Ni, Cr, and Mo, in which the Co—Ni-based alloy has a crystal texture in which a Goss orientation is a main orientation. The Co—Ni-based alloy preferably has a composition including, in terms of mass ratio: 28 to 42% of Co, 10 to 27% of Cr, 3 to 12% of Mo, 15 to 40% of Ni, 0.1 to 1% of Ti, 1.5% or less of Mn, 0.1 to 26% of Fe, 0.1% or less of C, and an inevitable impurity; and at least one kind selected from the group consisting of 3% or less of Nb, 5% or less of W, 0.5% or less of Al, 0.1% or less of Zr, and 0.01% or less of B.