Abstract:
A display apparatus is provided. The display apparatus includes: a display panel; and a backlight unit which provides the display panel with backlight. The backlight unit includes: a converter which converts a voltage of a received power and outputs an output power, a plurality of light source modules which receives the output power from the converter, and a control unit which determines powering conditions to operate the plurality of the light source modules in a specific state for each of the plurality of light source modules, and controls the converter sequentially based on the determined powering conditions.
Abstract:
A display apparatus and a method thereof including: a display unit which displays an image based on a video signal; a battery unit which supplies battery power; and a controller which controls adjusts brightness of the image based on residual quantity of the battery unit when the battery power is supplied.
Abstract:
A backlight unit and a display apparatus are provided. The display apparatus includes a power supply unit which outputs a first voltage; a light emitting unit which includes a first end connected to the power supply unit, and a second end, the first end receiving the first voltage from the power supply unit; and a compensation unit which includes a first end connected to the second end of the light emitting unit, and which compensates a deviation between the first voltage and a rated voltage of the light emitting unit.
Abstract:
A display apparatus, a backlight unit, a backlight providing method for controlling a plurality of light emitting diode (LED) strings are provided. The display apparatus includes a display panel, and a backlight unit (BLU) which projects backlight onto the display panel, wherein the BLU includes a plurality of light emitting diode (LED) strings, and a power supply unit which supplies minimum voltage from among the voltages needed to operate the plurality of LED strings to the plurality of LED strings. Therefore, the plurality of LED strings can have the same luminance.
Abstract:
A light emitting diode (LED) driver circuit is provided. The LED driver circuit includes an LED the LED; a power unit which provides a current to the LED through an inductor; a dimming switch which is connected to the LED and bypasses the current provided to the LED; an input unit which receives brightness information of the LED; a logic unit which calculates reference currents for each driving mode according to the received brightness information; a current control unit which controls the power unit to provide the current based on the driving mode and the calculated reference currents to the inductor; and a switch control unit which switches the dimming switch on if the driving mode of the LED driver circuit is switched to the dimming mode.
Abstract:
Three-dimensional (3D) glasses and a system for wireless power transmission are provided. The 3D glasses include a frame, a resonance reception part which includes a reception conductive wire loop and a resonance capacitor for wireless charging, a rectification part which rectifies a voltage generated by the resonance reception part, and a charging part which charges a battery using the rectified voltage. The frame includes a first temple, a second temple, a first lens holder part, a second lens holder part, and a bridge part connecting the first lens holder part and the second lens holder part.
Abstract:
Three dimensional (3D) glasses, a 3D display apparatus, and a 3D glasses charging system are provided. The 3D glasses, which operate in association with a 3D display apparatus, includes an interface unit which is configured to connect to the 3D display apparatus, and through which power is transmittable; a battery unit which supplies power to the 3D glasses; and a charging unit which is connected to the interface unit and the battery unit, and receives power input from the interface unit and charges the battery unit using the input power.
Abstract:
Three-dimensional (3D) eyeglasses, a charging cradle, a 3D display apparatus, and a system for charging 3D eyeglasses wirelessly are provided. A pair of 3D eyeglasses which operates in association with the 3D display apparatus includes a wireless charging unit which generates electricity using a signal wirelessly received from an external apparatus, and a power supply unit which supplies power to the 3D eyeglasses using the electricity charged by the wireless charging unit.