摘要:
A non-volatile semiconductor memory device comprises a substrate including a source region, a drain region and a channel region provided between the source region and the drain region with a gate stack located above the channel region with a metal gate located above the gate stack. The metal gate is comprised of a metal having a specific metal work function relative to a composition of a layer of the gate stack that causes electrons to travel through the entire thickness of the blocking layer via direct tunneling. The gate stack preferably comprises a multiple layer stack selected from a group of multiple layer stacks consisting of: ONO, ONH, OHH, OHO, HHH, or HNH, where O is an oxide material, N is SiN, and H is a high κ material.
摘要:
A non-volatile semiconductor memory device comprises a substrate including a source region, a drain region and a channel region provided between the source region and the drain region with a gate stack located above the channel region with a metal gate located above the gate stack. The metal gate is comprised of a metal having a specific metal work function relative to a composition of a layer of the gate stack that causes electrons to travel through the entire thickness of the blocking layer via direct tunneling. The gate stack preferably comprises a multiple layer stack selected from a group of multiple layer stacks consisting of: ONO, ONH, OHH, OHO, HHH, or HNH, where O is an oxide material, N is SiN, and H is a high κ material.
摘要:
In a method of manufacturing a memory device having improved erasing characteristics, the method includes sequentially forming a tunneling oxide layer, a charge storing layer, and a blocking oxide layer on a semiconductor substrate; annealing the semiconductor substrate including the tunneling oxide layer, the charge storing layer, and the blocking oxide layer under a gas atmosphere so that the blocking oxide layer has a negative fixed oxide charge; forming a gate electrode on the blocking oxide layer with the negative fixed oxide charge and etching the tunneling oxide layer, the charge storing layer, and the blocking oxide layer to form a gate structure; and forming a first doped region and a second doped region in the semiconductor substrate at sides of the gate structure by doping the semiconductor substrate with a dopant.
摘要:
In a method of manufacturing a memory device having improved erasing characteristics, the method includes sequentially forming a tunneling oxide layer, a charge storing layer, and a blocking oxide layer on a semiconductor substrate; annealing the semiconductor substrate including the tunneling oxide layer, the charge storing layer, and the blocking oxide layer under a gas atmosphere so that the blocking oxide layer has a negative fixed oxide charge; forming a gate electrode on the blocking oxide layer with the negative fixed oxide charge and etching the tunneling oxide layer, the charge storing layer, and the blocking oxide layer to form a gate structure; and forming a first doped region and a second doped region in the semiconductor substrate at sides of the gate structure by doping the semiconductor substrate with a dopant.
摘要:
Memory devices and methods of manufacturing the same are provided. Memory devices may include a substrate, a source region and a drain region and a gate structure. The gate structure may be in contact with the source and drain regions, and may include a barrier layer. The barrier layer may be formed of at least two layers. The at least two layers may have different bandgap energies.
摘要:
A SONOS memory device, and a method of manufacturing the same, includes a substrate and a multifunctional device formed on the substrate. The multifunctional device performs both switching and data storing functions. The multifunctional device includes first and second impurities areas, a channel formed between the first and second impurities areas, and a stacked material formed on the channel for data storage. The stacked material for data storage is formed by sequentially stacking a tunneling oxide layer, a memory node layer in which data is stored, a blocking layer, and an electrode layer.
摘要:
A SONOS type memory includes a semiconductor substrate, first and second impurity regions in the semiconductor substrate doped with impurity ions of a predetermined conductivity, separated a predetermined distance from each other, a channel region between the first and second impurity regions, and a data storage type stack on the semiconductor substrate between the first and second impurity regions. The data storage type stack includes a tunneling oxide layer, a memory node layer for storing data, a blocking oxide layer, and an electrode layer, which are sequentially formed. A dielectric constant of the memory node layer is higher than dielectric constants of the tunneling and the blocking oxide layers, and a band offset of the memory node layer is lower than band offsets of the tunneling and the blocking oxide layers. The tunneling oxide layer and the blocking oxide layer are high dielectric insulating layers.
摘要:
A SONOS memory device, and a method of manufacturing the same, includes a substrate and a multifunctional device formed on the substrate. The multifunctional device performs both switching and data storing functions. The multifunctional device includes first and second impurities areas, a channel formed between the first and second impurities areas, and a stacked material formed on the channel for data storage. The stacked material for data storage is formed by sequentially stacking a tunneling oxide layer, a memory node layer in which data is stored, a blocking layer, and an electrode layer.
摘要:
A non-volatile memory device having an improved erase efficiency and a method of manufacturing the same are provided. The method includes: forming a stack structure of a tunnel dielectric layer, a charge trapping layer, a charge blocking layer and a gate on a semiconductor substrate; and performing a post treatment of the gate using an oxygen or CF4 plasma or ion implantation to increase a work function of an element forming the gate. Since the work function of the metal layer forming the gate can be further increased, an electron back tunneling can be suppressed during an erase operation.
摘要:
A non-volatile memory device including a metal-insulator transition (MIT) material is provided. The non-volatile memory device includes a gate stack having a tunneling layer, a charge trap layer, a blocking layer and a gate electrode formed on a substrate, wherein at least one of the tunneling layer and the blocking layer is formed of an MIT (metal-insulator transition) material.