摘要:
The present invention comprises a process for removal of oxygenates from a paraffin-rich or olefin-rich paraffin stream which comprises passing a feed stream, comprising one or more C10 to C15 feed paraffins or C10 to C15 olefin-rich paraffin stream and one or more oxygenates through an adsorbent bed comprising one or more adsorbents selected from silica gel, activated alumina and sodium x zeolites to remove essentially all of said oxygenates; and recovering said paraffins. A second adsorbent bed may be employed to more thoroughly remove these oxygenates.
摘要:
The average propylene cycle selectivity of an oxygenate to propylene (OTP) process using a dual-function oxygenate conversion catalyst is substantially enhanced by the use of a combination of: 1) moving bed reactor technology in the hydrocarbon synthesis portion of the OTP flow scheme in lieu of the fixed bed technology of the prior art; 2) a hydrothermally stabilized and dual-functional catalyst system comprising a molecular sieve having dual-function capability dispersed in a phosphorus-modified alumina matrix containing labile phosphorus and/or aluminum anions; and 3) a catalyst on-stream cycle time of 400 hours or less. These provisions stabilize the catalyst against hydrothermal deactivation and hold the build-up of coke deposits on the catalyst to a level which does not substantially degrade dual-function catalyst activity, oxygenate conversion and propylene selectivity, thereby enabling maintenance of average propylene cycle yield near or at essentially start-of-cycle levels.
摘要:
Aromatic by-products are sorbed from mono-olefin-containing feedstocks of olefins having from about 6 to 22 carbon atoms per molecule that contain aromatic by-products having from 7 to 22 carbon atoms per molecule. A benzene-containing regenerant displaces and desorbs the aromatic by-products from the sorbent and a regeneration effluent is provided. The regeneration effluent is treated in a regeneration effluent distillation system to provide a benzene-rich stream and an aromatic by-products-containing stream. The latter is subjected to benzene-forming conditions and recycled to the regeneration effluent distillation system where benzene is recovered.
摘要:
The average cycle propylene selectivity of an oxygenate to propylene (OTP) process using one or more fixed or moving beds of a dual-function oxygenate conversion catalyst with recycle of one or more C4+ olefin-rich fractions is substantially enhanced by the use of selective hydrotreating technology on these C4+ olefin-rich recycle streams to substantially eliminate detrimental coke precursors such as dienes and acetylenic hydrocarbons. This hydrotreating step helps hold the build-up of detrimental coke deposits on the catalyst to a level which does not substantially degrade dual-function catalyst activity, oxygenate conversion and propylene selectivity, thereby enabling a substantial improvement in propylene average cycle yield. The propylene average cycle yield improvement enabled by the present invention over that achieved by the prior art using the same or a similar catalyst system but without the use of the hydrotreating step on the C4+ olefin-rich recycle stream is of the order of about 1.5 to 5.5 wt-% or more.
摘要:
Improved processing of an oxygenate-containing feedstock for increased production or yield of light olefins. Such processing involves oxygenate conversion to olefins and subsequent cracking of heavier olefins wherein at least a portion of the products from each of the reactors is elevated in pressure, using a common compressor, prior to being routed to a common product fractionation and recovery section. In one particular embodiment, the cracked product gas can be treated to remove acid gas therefrom. In another embodiment, the olefin cracking reactor is a moving bed reactor.
摘要:
A process for cracking a naphtha feedstream to light olefins is presented. The process comprises converting aromatics and naphthenes to paraffins, and separating iso- and normal paraffins using a ring opening reactor and an adsorption separation unit.