摘要:
A micro mirror unit includes a moving part carrying a mirror portion, a frame and torsion bars connecting the moving part to the frame. The moving part, the frame and the torsion bars are formed integral from a material substrate. The frame includes a portion thicker than the moving part.
摘要:
The micro-actuation element (X1) includes a movable unit (111), a frame (112) and a coupler (113) for connecting these, where the unit, the frame and the coupler are integrally formed in a material substrate having a multi-layer structure that consists of electroconductive layers (110a-110c), such as a core conduction layer (110b), and insulation layers (110d, 110e) intervening between the electroconductive layers (110a-110c). The movable unit (111) includes a first structure originating in the core conduction layer (110b). The frame (112) includes a second structure originating in the core conduction layer (110b). The coupler (113) includes a plurality of electrically separated torsion bars (113a, 113b) that originate in the core conduction layer (110b) and are connected continuously to the first structure and the second structure.
摘要:
A micromirror unit is provided which includes a frame, a mirror forming base upon which a mirror surface is formed, and a torsion connector which includes a first end connected to the mirror forming base and a second end connected to the frame. The torsion connector defines a rotation axis about which the mirror forming base is rotated relative to the frame. The torsion connector has a width measured in a direction which is parallel to the mirror surface and perpendicular to the rotation axis. The width of the torsion connector is relatively great at the first end. The width becomes gradually smaller from the first end toward the second end.
摘要:
The micro-actuation element (X1) includes a movable unit (111), a frame (112) and a coupler (113) for connecting these, where the unit, the frame and the coupler are integrally formed in a material substrate having a multi-layer structure that consists of electroconductive layers (110a-110c), such as a core conduction layer (110b), and insulation layers (110d, 110e) intervening between the electroconductive layers (110a-110c). The movable unit (111) includes a first structure originating in the core conduction layer (110b). The frame (112) includes a second structure originating in the core conduction layer (110b). The coupler (113) includes a plurality of electrically separated torsion bars (113a, 113b) that originate in the core conduction layer (110b) and are connected continuously to the first structure and the second structure.
摘要:
The micro-actuation element (X1) includes a movable unit (111), a frame (112) and a coupler (113) for connecting these, where the unit, the frame and the coupler are integrally formed in a material substrate having a multi-layer structure that consists of electroconductive layers (110a-110c), such as a core conduction layer (110b), and insulation layers (110d, 110e) intervening between the electroconductive layers (110a-110c). The movable unit (111) includes a first structure originating in the core conduction layer (110b). The frame (112) includes a second structure originating in the core conduction layer (110b). The coupler (113) includes a plurality of electrically separated torsion bars (113a, 113b) that originate in the core conduction layer (110b) and are connected continuously to the first structure and the second structure.
摘要:
A method is provided for making a micromirror unit which includes a frame, a mirror forming base, and bridges connecting the frame to the mirror forming base. The method includes the following steps. First, a first mask pattern is formed on a substrate for masking portions of the substrate which are processed into the frame and the mirror forming base. Then, a second mask pattern is formed on the substrate for masking portions of the substrate which are processed into the bridges. Then, the substrate is subjected to a first etching process with the first and the second mask patterns present as masking means. Then, the second mask pattern is removed selectively. Then, the substrate is subjected to a second etching process with the first mask pattern present as masking means. Finally, the first mask pattern is removed.
摘要:
A micro mirror unit includes a moving part carrying a mirror portion, a frame and torsion bars connecting the moving part to the frame. The moving part, the frame and the torsion bars are formed integral from a material substrate. The frame includes a portion thicker than the moving part.
摘要:
A method of making a micromirror unit is provided. In accordance with the method, a micromirror unit is made from a material substrate having a multi-layer structure composed of silicon layers and at least one intermediate layer. The resulting micromirror unit includes a mirror forming base, a frame and a torsion bar. The method includes the following steps. First, a pre-torsion bar is formed by subjecting one of the silicon layers to etching. The obtained pre-torsion bar is rendered smaller in thickness than the mirror forming base and is held in contact with the intermediate layer. Then, the desired torsion bar is obtained by removing the intermediate layer contacting with the pre-torsion bar.
摘要:
A micromirror unit is provided which includes a frame, a mirror forming base upon which a mirror surface is formed, and a torsion connector which includes a first end connected to the mirror forming base and a second end connected to the frame. The torsion connector defines a rotation axis about which the mirror forming base is rotated relative to the frame. The torsion connector has a width measured in a direction which is parallel to the mirror surface and perpendicular to the rotation axis. The width of the torsion connector is relatively great at the first end. The width becomes gradually smaller from the first end toward the second end.
摘要:
A method is for manufacturing a microstructure having a thin-walled portion with use of a material substrate. The material substrate has a laminated structure which includes a first conductor layer 101, a second conductor layer 102, a third conductor layer 103, a first insulating layer 104 interposed between the first conductor layer and the second conductor layer, and a second insulating layer 105 interposed between the second conductor layer and the third conductor layer. The first insulating layer is patterned to have a first masking part for covering a thin-wall forming region of the second conductor layer. The second insulating layer is patterned to have a second masking part for covering the thin-wall forming region of the second conductor layer. The method includes forming the thin-walled portion in the second conductor portion by etching the material substrate from the first conductor layer down to the second insulating layer via a mask pattern 58 including a non-masking region corresponding to the thin-wall forming region of the second conductor layer.