Abstract:
A method of producing p-xylene comprising the steps of separating the reformate feed in the reformate splitter to produce a benzene stream, a combined heavy stream, a xylene stream, and a toluene stream, converting the C9+ aromatic hydrocarbons in the presence of a dealkylation catalyst in the dealkylation reactor to produce a dealkylation effluent, separating the dealkylation effluent in the dealkylation splitter to produce a C9 stream and a C10+ stream, reacting the C9 stream, the toluene stream, the benzene stream, and the hydrogen stream in the presence of a transalkylation catalyst in the transalkylation reactor to produce a transalkylation effluent, separating the p-xylenes from the xylene stream in the p-xylene separation unit to produce a p-xylene product and a p-xylene depleted stream, converting the m-xylene and o-xylene in the p-xylene depleted stream in the isomerization unit to produce an isomerization effluent.
Abstract:
Composite catalysts includes zeolite particles at least partially embedded in a catalyst support material and at least one catalytically active compound deposited on the outer surfaces and pore surfaces of the catalyst support material, zeolite particles, or both. A method of making the composite catalysts may include preparing a catalyst precursor mixture that includes the zeolite, catalyst support material, triblock copolymer surfactant, and the catalytically active compound precursor and spray drying the catalyst precursor mixture. The composite catalysts may be used as a single catalyst for conducting olefin metathesis and cracking reactions. A method for producing propene may include contacting a butene-containing feed with the composite catalysts.
Abstract:
A process for treatment of PFO from a steam cracking zone includes selectively hydrogenating PFO or a portion thereof for conversion of polyaromatics compounds contained in the PFO into aromatic compounds with one benzene ring to produce a selectively hydrogenated stream. The selectively hydrogenated stream is reacted in the absence of added hydrogen for selective ring opening and dealkylation to produce a dealkylated BTX+ stream. The dealkylated BTX+ stream is separated into BTX compounds. Optionally the PFO is separated into a first stream containing C9+ aromatics compounds with one benzene ring, and a second stream containing C10+ aromatic compounds, whereby the first stream containing C9+ aromatics compounds with one benzene ring is passed to the ring opening step, and the feed to the selective hydrogenation step comprises all or a portion of the second stream containing C10+ aromatic compounds.
Abstract:
The present invention relates to methods and systems useful for producing aromatics-rich products from liquid hydrocarbon condensates. The production system includes a hydroprocessing reactor, an aromatization reactor system and a hydrogen extraction unit. The methods for producing the aromatics-rich products include introducing a wide boiling range condensate into the hydroprocessing reactor and operating the aromatics production system such that the hydroprocessing reactor forms a naphtha boiling temperature range liquid product. The liquid hydrocarbons produced in accordance with the present invention may optionally be further processed using a hydrogen extraction unit to produce a high-purity hydrogen fraction.
Abstract:
The present invention relates to methods and systems useful for producing aromatics-rich products from liquid hydrocarbon condensates. The production system includes a hydroprocessing reactor, an aromatization reactor system and a hydrogen extraction unit. The methods for producing the aromatics-rich products include introducing a wide boiling range condensate into the hydroprocessing reactor and operating the aromatics production system such that the hydroprocessing reactor forms a naphtha boiling temperature range liquid product. The liquid hydrocarbons produced in accordance with the present invention may optionally be further processed using a hydrogen extraction unit to produce a high-purity hydrogen fraction.
Abstract:
A method of forming mixed xylenes from a heavy reformate using a dealkylation-transalkylation system includes the step of introducing both a heavy reformate containing methyl ethyl benzenes and tri-methyl benzenes and that is sufficiently free of toluene and a hydrogen-containing material into the dealkylation stage such that the heavy reformate and the hydrogen-containing material intermingle and contact the hydrodealkylation catalyst. The dealkylation-transalkylation system includes dealkylation, non-aromatic product gas separations and transalkylation stages. Toluene forms from the reaction of methyl ethyl benzenes and hydrogen in the presence of the hydrodealkylation catalyst. The method also includes the step of introducing a dealkylated heavy reformate into the transalkylation stage such that the dealkylated heavy reformate contacts a transalkylation catalyst, forming a transalkylation stage product mixture includes mixed xylenes.
Abstract:
A process for treatment of PFO from a steam cracking zone includes selectively hydrogenating PFO or a portion thereof for conversion of polyaromatics compounds contained in the PFO into aromatic compounds with one benzene ring to produce a selectively hydrogenated stream. The selectively hydrogenated stream is selectively hydrocracked for selective ring opening and dealkylation to produce a selectively hydrocracked BTX+ stream. The selectively hydrocracked BTX+ stream is separated into BTX compounds. Optionally the PFO is separated into a first stream containing C9+ aromatics compounds with one benzene ring, and a second stream containing C10+ aromatic compounds, whereby the first stream containing C9+ aromatics compounds with one benzene ring is passed to the selective hydrocracking step, and the feed to the selective hydrogenation step comprises all or a portion of the second stream containing C10+ aromatic compounds.
Abstract:
A process for treatment of PFO from a steam cracking zone includes selectively hydrogenating PFO or a portion thereof for conversion of polyaromatics compounds contained in the PFO into aromatic compounds with one benzene ring to produce a selectively hydrogenated stream. The selectively hydrogenated stream is reacted in a fluid catalytic cracking reactor for selective ring opening and dealkylation to produce fluid catalytic cracking including light cycle oil. In addition, a naphtha reformer is integrated, so that light cycle oil and a reformate stream are separated into BTX compounds. Optionally the PFO is separated into a first stream containing C9+ aromatics compounds with one benzene ring, and a second stream containing C10+ aromatic compounds, whereby the first stream containing C9+ aromatics compounds with one benzene ring is passed to the fluid catalytic cracking reactor, and the feed to the selective hydrogenation step comprises all or a portion of the second stream containing C10+ aromatic compounds.
Abstract:
A system includes a hydroprocessing zone configured to remove impurities from crude oil; a first separation unit configured to separate a liquid output from the hydroprocessing zone into a light fraction and a heavy fraction; an aromatic extraction subsystem configured to extract aromatic petrochemicals from the light fraction; and a pyrolysis section configured to crack the heavy fraction into multiple olefinic products.
Abstract:
A process for treatment of PFO from a steam cracking zone includes selectively hydrogenating PFO or a portion thereof for conversion of polyaromatics compounds contained in the PFO into aromatic compounds with one benzene ring to produce a selectively hydrogenated stream. The selectively hydrogenated stream is selectively hydrocracked for selective ring opening and dealkylation to produce a selectively hydrocracked BTX+ stream. In addition, a naphtha reformer is integrated, so that the selectively hydrocracked BTX+ stream and a reformate stream are separated into BTX compounds. Optionally the PFO is separated into a first stream containing C9+ aromatics compounds with one benzene ring, and a second stream containing C10+ aromatic compounds, whereby the first stream containing C9+ aromatics compounds with one benzene ring is passed to the selective hydrocracking step, and the feed to the selective hydrogenation step comprises all or a portion of the second stream containing C10+ aromatic compounds.