Abstract:
A system includes an adjustable implant configured for implantation internally within a subject, the adjustable implant comprising a first permanent magnet configured for rotation about a first axis, the first permanent magnet operatively coupled to a drive transmission configured to alter a dimension of the adjustable implant. The system further includes an external adjustment device configured for placement on or adjacent to the skin of the subject, the external adjustment device comprising a second permanent magnet configured for rotation about a second axis and a third permanent magnet configured for rotation about a third axis different from the second axis; and wherein cooperative rotation of the second permanent magnet about the second axis and rotation of the third permanent magnet about the third axis result in rotation of the first permanent magnet about the first axis.
Abstract:
A distraction system includes a first distraction device having a first adjustable portion and a first distraction rod configured to telescope within the first adjustable portion, the first adjustable portion having contained therein a first rotatable magnetic assembly mechanically coupled to a first screw configured to axially telescope the first distraction rod. A second distraction device is provided and includes a second adjustable portion and a second distraction rod configured to telescope within the second adjustable portion, the second adjustable portion having contained therein a second rotatable magnetic assembly mechanically coupled to a second screw configured to axially telescope the second distraction rod. An adjustable joint connects one end of the first adjustable portion to one end of the second adjustable portion.
Abstract:
A method of positioning an external adjustment device relative to a patient includes placing a magnetic viewing sheet adjacent to a patient and identifying the location of an implanted magnetic assembly using the magnetic viewing sheet by visualizing a magnetic image of the implanted magnetic assembly in the magnetic viewing sheet. The external adjustment device is placed on the patient adjacent to the location where the magnetic image was located.
Abstract:
A spinal distraction system includes a distraction rod having a first end and a second end, the first end being configured for affixation to a subject's spine at a first location, the distraction rod having a second end containing a recess having a threaded portion disposed therein. The system further includes an adjustable portion configured for affixation relative to the subject's spine at a second location remote from the first location, the adjustable portion comprising a housing containing a magnetic assembly, the magnetic assembly affixed at one end thereof to a lead screw, the lead screw operatively coupled to the threaded portion. A locking pin may secure the lead screw to the magnetic assembly. An o-ring gland disposed on the end of the housing may form a dynamic seal with the distraction rod.
Abstract:
A gastrointestinal implant system includes an adjustable restriction device having a contact surface configured for at least partially engaging a surface of a gastrointestinal tract of a mammal. The implant system further includes an implantable interface including a first driving element, the first driving element being moveable and operatively coupled to the adjustable restriction device by an actuator configured to change the dimension or configuration of the contact surface in response to movement of the first driving element. The system also includes an external adjustment device having a second driving element configured to non-invasively engage the first driving element of the implantable interface from a location external to the mammal. In the system, actuation of the second driving element of the external adjustment device produces movement in the first driving element of the implantable interface and results in a change in the dimension or configuration of the contact surface.
Abstract:
A system for manipulating a portion of the skeletal system of a mammal includes an implant having a first portion and a second portion, the first portion configured for mounting at a first location of the skeletal system and the second portion configured for mounting at a second location of the skeletal system. The system further includes an adjustment device disposed on the implant and configured to apply a biasing force to the skeletal system, the adjustment device including a magnetic element configured for cyclic movement, the magnetic element being operatively coupled to a drive element configured to alter at least one of the distance or the force between the first location and the second location. The system includes an implantable feedback device operatively coupled to the implant that is configured to produce a response that is indicative of a condition of the implant which can be identified non-invasively.
Abstract:
A system for manipulating a portion of the skeletal system in the body of a mammal includes an implant having a first portion and a second portion, the first portion configured for coupling to a first location of the skeletal system and the second portion configured for coupling to a second location of the skeletal system. The system includes an adjustment device configured to change at least one of the distance or force between the first location and the second location, the adjustment device having a magnetic element configured for rotation about an axis of rotation, the magnetic element being operatively coupled to a drive element configured to alter at least one of the distance or the force between the first location and the second location. The system also includes an external adjustment device configured to magnetically couple to the adjustment device from a location external to the mammal.
Abstract:
A system includes an adjustable implant configured for implantation internally within a subject, the adjustable implant having a permanent magnet configured for rotation about an axis of rotation, the permanent magnet operatively coupled to a drive transmission configured to alter a dimension of the adjustable implant. The system further includes an external adjustment device configured for placement on or adjacent to the skin of the subject comprising at least one magnet configured for rotation, the external adjustment device further comprising a motor configured to rotate the at least one magnet, whereby rotation of the at least one magnet of the external adjustment device effectuates rotational movement of the permanent magnet of the adjustable implant and alters the dimension of the adjustable implant. The system includes drive control circuitry configured to drive the motor of the external adjustment device to achieve a target dimension of the adjustable implant.
Abstract:
A wirelessly-powered medical system includes an intermediate energy transfer module configured to receive energy transferred from a main power source, a transferring magnetic resonator connected to the intermediate energy transfer module and configured to transmit a wireless power transfer signal, and a medical device configured for placement on, in, or in close proximity to a subject, the medical device requiring at least some input power to be fully operational, the medical device connected to a receiving magnetic resonator, wherein the transferring magnetic resonator is configured to exchange power wirelessly via the wireless power transfer signal with the receiving magnetic resonator.
Abstract:
An interspinous process device is configured for placement between adjacent spinous processes on a subject's spine. The device includes a housing configured for mounting to a first spinal process, the housing having a lead screw fixedly secured at one end thereof. A magnetic assembly is at least partially disposed within the housing and configured for mounting to a second spinal process. The magnetic assembly includes a hollow magnet configured for rotation within the magnetic assembly, the hollow magnet comprising a threaded insert configured to engage with the lead screw. An externally applied magnetic field rotates the hollow magnet in a first direction or a second, opposite direction. Rotation of the hollow magnet in the first direction causes telescopic movement of the magnetic assembly out of the housing (i.e., elongation) and rotation in the second direction causes telescopic movement of the magnetic assembly into the housing (i.e., shortening).