摘要:
The present invention is directed to a color linear sensor of a simple structure which can accurately measure a degree of a color mixture in a sensor section. In a color linear sensor having a dot-sequential sensor array (1), only one pixel of a predetermined color (R) in a reference pixel region (3) is allowed to receive an incident light. Then, a degree of color mixture is estimated by calculating a level difference between a signal output of this pixel and a signal output of a pixel of the same color as that of the former pixel in an effective pixel region (2). Also, the present invention is to provide a color linear sensor which can prevent sensors from being displaced from each other in position, simplify a configuration of an external circuit and which can prevent a color mixture from being caused by signal charges deteriorated after they are transferred by a transfer register. In a color linear sensor having a dot-sequential sensor array (1), read-out gates (22, 24) are formed as two-stage configuration for sequentially reading out signal charges from respective sensors (1R), (1G), (1B) of the dot-sequential sensor array (1) to a CCD register (23) at the unit of pixels, thereby to sequentially output signal charges of one line at every color in a line-sequential fashion.
摘要:
A charge transfer device comprising charge transfer means for transferring charges, a floating diffusion layer for accumulating the charges transferred from said charge transfer means, a floating gate electrode formed on said floating diffusion layer via an insulating layer, charge detection means connected to the floating gate electrode for outputting a voltage corresponding to an amount of charges accumulated in the floating diffusion layer, first precharge means connected to the floating gate electrode, the first precharge means starting precharging of the floating gate electrode responsive to transition of a first pulse voltage from a first state to a second state, the first precharge means terminating precharging of the floating gate electrode responsive to transition of the first pulse voltage from the second state to the first state, second precharge means connected to the floating diffusion layer, the second precharge means starting precharging of the floating diffusion layer responsive to transition of a second pulse voltage from a third state to a fourth state, the second precharge means terminating precharging of the floating diffusion layer responsive to transition of the second pulse voltage from the fourth state to the third state, first pulse supply means for supplying the first pulse voltage to the first precharge means, and second pulse supply means for supplying the second pulse voltage to the second precharge means, transition of the second pulse voltage from the third state to the fourth state being produced following transition of the first pulse voltage from the first state to the second state. In a preferred embodiment, transition of the first pulse voltage from the second state to the first state is produced following transition of the second pulse voltage from the fourth state to the third state.
摘要:
The present invention is directed to a linear image sensor, the electric charge storage time of which can be varied. According to an embodiment of the present invention, there is provided a linear image sensor in which a read-out gate and a charge-transfer gate are disposed on one side of an image sensor array, and a drain gate and a drain region are disposed on the other side of the image sensor array, whereby the electric charge storage time in which a signal charge is transferred by the charge-transfer register after the signal charge is read out by the application of a read-out signal to the read-out gate and the next read-out signal is applied to the read-out gate can be varied by varying the application timing of the drain gate signal. When the linear image sensor is applied to a facsimile, the output level can be adjusted and the light and shade can be controlled by varying the electric charge accumulation time in response to the change of light intensity of a light source or by the change of scan speed of the linear image sensor.
摘要:
A linear sensor includes first, second, and third linear sensor sections each composed of a linear array of sensor elements, wherein the linear arrays of sensor elements are spaced seven lines apart from each other. In operation, an image is sensed while moving the linear sensor three lines at a time. The output signals of the respective linear sensor sections are adjusted in terms of the timing relative to each other by a timing adjustment circuit. This allows the linear sensor to sense an image at a higher scanning speed and thus for a shorter time period.
摘要:
There is disclosed a solid-state imager for preventing an unwanted potential barrier in the overflow control gate when ions are implanted into the sensor portion. The imager is capable of easily controlling the amount of overflow. The sensor portion takes the hole accumulation diode (HAD) sensor structure. A potential barrier is created in the overflow control gate by ion implantation. A potential difference created between the overflow control gate and the sensor portion is determined by the amount of ions implanted. A DC voltage V.sub.D applied to the overflow drain is variable. The potential difference is adjusted by varying the DC voltage V.sub.D. Thus, elements of the imager are uniform in potential barrier.
摘要:
A charge transfer device formed on a semiconductor substrate comprising: a charge transfer section formed on the semiconductor substrate for transferring charges, a floating gate having a floating gate diffusion layer formed on the semiconductor substrate for accumulating the charges transferred from the charge transfer section, an output gate section formed between the charge transfer section and the floating gate on the semiconductor substrate, and a charge detecting circuit electrically connected to the floating gate for outputting a voltage corresponding to the amount of the charges accumulated in the floating gate diffusion layer, the output gate section having a first output gate region adjacent to the charge transfer means and a second output gate region adjacent to the floating gate diffusion layer, the first output gate region having a first output gate electrode formed thereon with an insulating film therebetween, the second output gate region having a second output gate electrode formed thereon with an insulating film therebetween, a dc voltage being applied to the gate electrode, and an output voltage being applied to the second output gate electrode from the charging detecting circuit.
摘要:
A charge transfer device has a plurality of registers which run parallel to each other and across which electrical charges are transferred. For efficient charge transfer across the registers, the transfer elecrtrode of one register and the transfer electrode of an adjacent register are arrayed in contiguity to each other and driven by different driving pulses and a deeper potential is provided in the signal charge receiving side than in the signal charge forwarding side. The registers are arrayed parallel to a sensor row constituted by a linear array of different color sensors and each handle signal charges of the respective colors. In this manner, the outputs from the registers are in the form of the separate color signals to prevent color mixing.
摘要:
There is disclosed a solid-state imager for preventing an unwanted potential barrier in the overflow control gate when ions are implanted into the sensor portion. The imager is capable of easily controlling the amount of overflow. The sensor portion takes the hole accumulation diode (HAD) sensor structure. A potential barrier is created in the overflow control gate by ion implantation. A potential difference created between the overflow control gate and the sensor portion is determined by the amount of ions implanted. A DC voltage V.sub.D applied to the overflow drain is variable. The potential difference is adjusted by varying the DC voltage V.sub.D. Thus, elements of the imager are uniform in potential barrier.
摘要:
A charge transfer device formed on a semiconductor substrate comprising: a charge transfer section formed on the semiconductor substrate for transferring charges, a floating gate having a floating gate diffusion layer formed on the semiconductor substrate for accumulating the charges transferred from the charge transfer section, an output gate section formed between the charge transfer section and the floating gate on the semiconductor substrate, and a charge detecting circuit electrically connected to the floating gate for outputting a voltage corresponding to the amount of the charges accumulated in the floating gate diffusion layer, the output gate section having a first output gate region adjacent to the charge transfer means and a second output gate region adjacent to the floating gate diffusion layer, the first output gate region having a first output gate electrode formed thereon with an insulating film therebetween, the second output gate region having a second output gate electrode formed thereon with an insulating film therebetween, a dc voltage being applied to the gate electrode, and an output voltage being applied to the second output gate electrode from the charging detecting circuit.
摘要:
A charge transfer device formed on a semiconductor substrate comprising: a charge transfer section formed on the semiconductor substrate for transferring charges, a floating gate having a floating gate diffusion layer formed on the semiconductor substrate for accumulating the charges transferred from the charge transfer section, an output gate section formed between the charge transfer section and the floating gate on the semiconductor substrate, and a charge detecting circuit electrically connected to the floating gate for outputting a voltage corresponding to the amount of the charges accumulated in the floating gate diffusion layer, the output gate section having a first output gate region adjacent to the charge transfer means and a second output gate region adjacent to the floating gate diffusion layer, the first output gate region having a first output gate electrode formed thereon with an insulating film therebetween, the second output gate region having a second output gate electrode formed thereon with an insulating film therebetween, a dc voltage being applied to the gate electrode, and an output voltage being applied to the second output gate electrode from the charging detecting circuit.