Abstract:
In a semiconductor device including a transistor including an oxide semiconductor film and a protective film over the transistor, an oxide insulating film containing oxygen in excess of the stoichiometric composition is formed as the protective film under the following conditions: a substrate placed in a treatment chamber evacuated to a vacuum level is held at a temperature higher than or equal to 180° C. and lower than or equal to 260° C.; a source gas is introduced into the treatment chamber so that the pressure in the treatment chamber is set to be higher than or equal to 100 Pa and lower than or equal to 250 Pa; and a high-frequency power higher than or equal to 0.17 W/cm2 and lower than or equal to 0.5 W/cm2 is supplied to an electrode provided in the treatment chamber.
Abstract:
In a semiconductor device including a transistor including an oxide semiconductor film and a protective film over the transistor, an oxide insulating film containing oxygen in excess of the stoichiometric composition is formed as the protective film under the following conditions: a substrate placed in a treatment chamber evacuated to a vacuum level is held at a temperature higher than or equal to 180° C. and lower than or equal to 260° C.; a source gas is introduced into the treatment chamber so that the pressure in the treatment chamber is set to be higher than or equal to 100 Pa and lower than or equal to 250 Pa; and a high-frequency power higher than or equal to 0.17 W/cm2 and lower than or equal to 0.5 W/cm2 is supplied to an electrode provided in the treatment chamber.
Abstract:
A semiconductor layer with a low density of trap states is provided. A transistor with stable electrical characteristics is provided. A transistor having high field-effect mobility is provided. A semiconductor device including the transistor is provided. A method for evaluating a semiconductor layer is provided. A method for evaluating a transistor is provided. A method for evaluating a semiconductor device is provided. Provided is, for example, a semiconductor layer with a low defect density which can be used for a channel formation region of a transistor, a transistor including a semiconductor layer with a low defect density in a channel formation region, or a semiconductor device including the transistor.
Abstract:
In a semiconductor device including a transistor including an oxide semiconductor film and a protective film over the transistor, an oxide insulating film containing oxygen in excess of the stoichiometric composition is formed as the protective film under the following conditions: a substrate placed in a treatment chamber evacuated to a vacuum level is held at a temperature higher than or equal to 180° C. and lower than or equal to 260° C.; a source gas is introduced into the treatment chamber so that the pressure in the treatment chamber is set to be higher than or equal to 100 Pa and lower than or equal to 250 Pa; and a high-frequency power higher than or equal to 0.17 W/cm2 and lower than or equal to 0.5 W/cm2 is supplied to an electrode provided in the treatment chamber.
Abstract:
In a semiconductor device including a transistor including an oxide semiconductor film and a protective film over the transistor, an oxide insulating film containing oxygen in excess of the stoichiometric composition is formed as the protective film under the following conditions: a substrate placed in a treatment chamber evacuated to a vacuum level is held at a temperature higher than or equal to 180° C. and lower than or equal to 260° C.; a source gas is introduced into the treatment chamber so that the pressure in the treatment chamber is set to be higher than or equal to 100 Pa and lower than or equal to 250 Pa; and a high-frequency power higher than or equal to 0.17 W/cm2 and lower than or equal to 0.5 W/cm2 is supplied to an electrode provided in the treatment chamber.
Abstract translation:在包括晶体管上的包括氧化物半导体膜和保护膜的晶体管的半导体器件中,在以下条件下形成含有超过化学计量组成的氧的氧化物绝缘膜作为保护膜:放置在处理室中的衬底 抽真空至真空度保持在高于或等于180℃且低于或等于260℃的温度; 将源气体引入处理室,使得处理室中的压力设定为高于或等于100Pa且小于或等于250Pa; 并且将高于或等于0.17W / cm 2且低于或等于0.5W / cm 2的高频功率供应到设置在处理室中的电极。
Abstract:
A highly reliable semiconductor device that includes a transistor including an oxide semiconductor is provided. In a semiconductor device which includes a bottom-gate transistor including an oxide semiconductor film, the spin density of the oxide semiconductor film is lower than or equal to 1×1018 spins/cm3, preferably lower than or equal to 1×1017 spins/cm3, further preferably lower than or equal to 1×1016 spins/cm3. The conductivity of the oxide semiconductor film is lower than or equal to 1×103 S/cm, preferably lower than or equal to 1×102 S/cm, further preferably lower than or equal to 1×101 S/cm.
Abstract:
A method for evaluating an oxide semiconductor film, a method for evaluating a transistor including an oxide semiconductor film, a transistor which includes an oxide semiconductor film and has favorable switching characteristics, and an oxide semiconductor film which is applicable to a transistor and enables the transistor to have favorable switching characteristics are provided. A PL spectrum of an oxide semiconductor film obtained by low-temperature PL spectroscopy has a first curve whose local maximum value is found in a range of 1.6 eV or more and 1.8 eV or less and a second curve whose local maximum value is found in a range of 1.7 eV or more and 2.4 eV or less. A value obtained by dividing the area of the second curve by the sum of the area of the first curve and the area of the second curve is 0.1 or more and less than 1.
Abstract:
In a semiconductor device including a transistor including an oxide semiconductor film and a protective film over the transistor, an oxide insulating film containing oxygen in excess of the stoichiometric composition is formed as the protective film under the following conditions: a substrate placed in a treatment chamber evacuated to a vacuum level is held at a temperature higher than or equal to 180° C. and lower than or equal to 260° C.; a source gas is introduced into the treatment chamber so that the pressure in the treatment chamber is set to be higher than or equal to 100 Pa and lower than or equal to 250 Pa; and a high-frequency power higher than or equal to 0.17 W/cm2 and lower than or equal to 0.5 W/cm2 is supplied to an electrode provided in the treatment chamber.
Abstract:
In a semiconductor device including a transistor including an oxide semiconductor film and a protective film over the transistor, an oxide insulating film containing oxygen in excess of the stoichiometric composition is formed as the protective film under the following conditions: a substrate placed in a treatment chamber evacuated to a vacuum level is held at a temperature higher than or equal to 180° C. and lower than or equal to 260° C.; a source gas is introduced into the treatment chamber so that the pressure in the treatment chamber is set to be higher than or equal to 100 Pa and lower than or equal to 250 Pa; and a high-frequency power higher than or equal to 0.17 W/cm2 and lower than or equal to 0.5 W/cm2 is supplied to an electrode provided in the treatment chamber.