Abstract:
By repeating a purification process of a light-emitting organic compound several times, a thin film made of the light-emitting organic compound to be used in an EL display device contains ionic impurities at the concentration of 0.1 ppm or lower and has a volume resistivity in the range of 3null1010 nullcm or larger. By using such a thin film as a light-emitting layer in the EL device, a current caused by reasons other than the carrier recombination can be prevented from flowing through the thin film, and deterioration caused by unnecessary heat generation can be suppressed. Accordingly, it is possible to obtain an EL display device with high reliability.
Abstract:
A liquid crystal electro-optical device comprising a pair of substrates at least one of them is light-transmitting, electrodes being provided on said substrates, and an electro-optical modulating layer being supported by said pair of substrates, provided that said electro-optical modulating layer comprises an anti-ferroelectric liquid crystal material or a smectic liquid crystal material which exhibits anti-ferroelectricity, and a transparent material.
Abstract:
Plurality of pixels (102) are arranged on the substrate. Each of the pixels (102) is provided with an EL element which utilizes as a cathode a pixel electrode (105) connected to a current control TFT (104). On a counter substrate (110), a light shielding film (112) is disposed at the position corresponding to periphery of each pixel (102), while a color filter (113) is disposed at the position corresponding to each of the pixels (102). This light shielding film makes the contour of the pixels clear, resulting in an image display with high definition. In addition, it is possible to fabricate the EL display device of the present invention with most of an existing manufacturing line for liquid crystal display devices. Thus, an amount of equipment investment can be significantly reduced, thereby resulting in a reduction in the total manufacturing cost.
Abstract:
An element structure is provided in which film formation irregularities and deterioration of an organic compound layer formed on an electrode are prevented in an active matrix light emitting device. After forming an insulating film so as to cover edge portions of a conductor which becomes a light emitting element electrode, polishing is performed using a CMP (chemical mechanical polishing) method in the present invention, thus forming a structure in which surfaces of a first electrode and a leveled insulating layer are coplanar. The film formation irregularities in the organic compound layer formed on the electrode can thus be prevented, and electric field concentration from the edge portions of the electrode can be prevented.
Abstract:
An active matrix liquid crystal display having improved reliability. Pixel regions and a peripheral driver circuit are integrally packed on the display. TFTs forming the peripheral driver circuit are located inside a sealing material layer on the side of a liquid crystal material, thus protecting the peripheral driver circuit from external moisture and contaminants. This enhances the long-term reliability of the peripheral driver circuit. Pixel TFTs are arranged in pixel regions. The leads going from the TFTs forming the peripheral driver circuit to the pixel TFTs are shortened. This results in a reduction in the resistance. As a result, the display characteristics are improved.
Abstract:
To provide an electronic device capable of bright image display. A pixel is structured such that a switching TFT and a current controlling TFT are formed on a substrate and an EL element is electrically connected to the current controlling TFT. A gate capacitor formed between a gate electrode of the current controlling TFT and an LDD region thereof holds a voltage applied to the gate electrode, and hence a capacitor (condenser) is not particularly necessary in the pixel, thereby making the effective light emission area of the pixel large.
Abstract:
An object of the invention is reducing a manufacturing cost of an EL display device and an electronic device equipped therewith. In an active matrix type EL display device, an EL material for a pixel portion is formed by coating steps using a dispenser device. As a discharge port of the dispenser is made into a linear shape, the throughput is increased. Such the dispenser device is used, so that it is possible to simplify the EL layer forming steps, then, to reduce the manufacturing cost.
Abstract:
An object of the invention is to reduce the manufacturing cost of EL display devices and electronic devices incorporating the EL display devices. An EL material is formed by printing in an active matrix EL display device. Relief printing or screen printing may be used as the method of printing. Manufacturing steps of the EL layer is therefore simplified and reduction of manufacturing cost is devised.
Abstract:
A TFT formed on an insulating substrate source, drain and channel regions, a gate insulating film formed on at least the channel region and a gate electrode formed on the gate insulating film. Between the channel region and the drain region, a region having a higher resistivity is provided in order to reduce an Ioff current. A method for forming this structure comprises the steps of anodizing the gate electrode to form a porous anodic oxide film on the side of the gate electrode; removing a portion of the gate insulating using the porous anodic oxide film as a mask so that the gate insulating film extends beyond the gate electrode but does not completely cover the source and drain regions. Thereafter, an ion doping of one conductivity element is performed. The high resistivity region is defined under the gate insulating film.
Abstract:
An object of the present invention is to provide an EL display device, which has a high operating performance and reliability. A third passivation film 45 is disposed under an EL element 203 which comprises a pixel electrode (anode) 46, an EL layer 47 and a cathode 48, to make a structure in which heat generated by the EL element 203 is radiated. Further, the third passivation film 45 prevents alkali metals within the EL element 203 from diffusing into the TFTs side, and prevents moisture and oxygen of the TFTs side from penetrating into the EL element 203. More preferably, heat radiating effect is given to a fourth passivation film 50 to make the EL element 203 to be enclosed by heat radiating layers.