Abstract:
A nonvolatile memory device and a method of forming a nonvolatile memory device are provided. The nonvolatile memory device includes an active region of a semiconductor substrate defined by a device isolation layer, a tunnel insulating structure disposed on the active region, and a charge storage structure disposed on the tunnel insulating structure. The nonvolatile memory device also includes a gate interlayer dielectric layer disposed on the charge storage structure, and a control gate electrode disposed on the gate interlayer dielectric layer. The charge storage structure includes an upper charge storage structure and a lower charge storage structure, and the upper charge storage structure has a higher impurity concentration than the lower charge storage structure.
Abstract:
A method of manufacturing a vertical type memory device includes stacking a first lower insulating layer, one layer of a lower sacrificial layer and a second lower insulating layer on a substrate, forming a stacking structure by stacking sacrificial layers and insulating layers, and etching an edge portion of the stacking structure to form a preliminary stepped shape pattern structure. The preliminary stepped shape pattern structure has a stepped shape edge portion. A pillar structure making contact with a surface of the substrate is formed. The preliminary stepped shape pattern structure, the lower sacrificial layer, and the first and second lower insulating layers are partially etched to form a first opening portion and a second opening portion to form a stepped shape pattern structure. The second opening portion cuts at least an edge portion of the lower sacrificial layer.
Abstract:
A vertical type semiconductor device includes first and second word line structures that include first and second word lines. The word lines surround a plurality of pillar structures, which are provided to connect the word lines to corresponding string select lines. Connecting patterns electrically connect pairs of adjacent first and second word lines in a same plane. The device may be a nonvolatile memory device or a different type of device.
Abstract:
Step shape pad structure and wiring structure in vertical type semiconductor device are include a first conductive line having a first line shape and including first pad regions at an upper surface of an edge portion, and a second conductive line having s second line shape and being spaced apart from the first conductive line and provided on the first conductive line. An end portion of the first conductive line is extended to a first position. Second pad regions are included on an upper surface of an edge portion of the second conductive line. An end portion of the second conductive line is extended to the first position. The second conductive line includes a dent portion at a facing portion to the first pad regions in a vertical direction to expose the first pad regions. The pad structure may be used in a vertical type nonvolatile memory device.
Abstract:
A method of manufacturing a semiconductor device including forming a plurality of gate structures spaced apart from each other on a substrate; forming a first insulation layer covering the gate structures, the first insulation layer including a void between the gate structures; removing an upper portion of the first insulation layer to form a first insulation layer pattern on sidewalls of lower portions of the gate structures and on the substrate between the gate structures, the first insulation layer pattern including a first recess thereon; forming a conductive layer on upper portions of the gate structures exposed by the first insulation layer pattern; reacting the conductive layer with the gate structures; and forming a second insulation layer on the upper portions of the gate structures, the second insulation layer including a second recess therebeneath in fluid communication with the first recess.
Abstract:
Provided is a nonvolatile memory device and a fabrication method. The nonvolatile memory device includes an active region defined in a semiconductor substrate, a gate insulating layer formed on the active region and a plurality of gate patterns formed on the gate insulating layer, and crossing over the active region. The gate insulating layer includes a discharge region in a predetermined portion between the gate patterns, the discharge region having a lesser thickness than that of the gate insulating layer under the gate pattern, because a thickness portion of the gate insulating layer is removed to form the discharge region.