Abstract:
A shift register includes an input terminal, an output terminal, a first clock signal terminal, a second clock signal terminal, a first level signal terminal, a second level terminal, a first capacitor and a second capacitor, and five transistors. The five transistors are controlled by first and second clock signals applied to the respective first and second signal terminals to shift a signal received from the input terminal to the output terminal with a half cycle period delay while maintaining a stable level of the shifted signal at the output terminal.
Abstract:
A Liquid Crystal Display (LCD) panel includes a pixel array, a scanning line driver, a common electrode driver, and a data line driver. During a current frame, the scanning lines receive a scanning signal. The common electrode driver applies a common electrode signal to the common electrode line during a time window in which the scanning line corresponding to the common electrode line receives the scanning signal. The data line driver applies a data signal to the data lines during a time window in which the scanning line driver outputs the scanning signal. The data signals of adjacent pixel rows have opposite polarities, the common electrode signal during the current frame is opposite to the common electrode signal during a next frame, and the data signals of the pixel row in the current frame have opposite polarities of the data signals applied on the pixel row during the next frame.
Abstract:
The present invention discloses a pixel compensation circuit and method for an organic light emitting display. The circuit comprises a first transistor, a second transistor, a third transistor, a fourth transistor, a driving transistor, a capacitor, and an organic light emitting element. The first transistor transmits a data signal to a first plate of the capacitor; the second transistor applies a reference voltage to the first plate of the capacitor; the driving transistor determines a magnitude of a driving current; the third transistor establishes a connection between the gate electrode and the drain electrode of the driving transistor; the fourth transistor passes the driving current from the driving transistor to the organic light emitting element; and the organic light emitting element emits light in response to the driving current.
Abstract:
A pixel unit at a TFT-LCD array substrate includes a thin film transistor, a first storage capacitor, and a second storage capacitor. The first storage capacitor includes a transparent common electrode, a pixel electrode, and a first insulating layer disposed between the transparent common electrode and the pixel electrode. The second storage capacitor includes a first conductive layer, a second conductive layer, and a second insulating layer disposed between the first and second conductive layers. The first conductive layer is connected to the transparent common electrode within the pixel unit. The second conductive layer is connected to the pixel electrode within the pixel unit.
Abstract:
An OLED display apparatus with an in cell touch structure includes a cover plate, an array substrate facing the cover plate, an organic light-emitting layer arranged therebetween, multiple driving lines and multiple sensing lines arranged at an inner side of the cover plate facing the array substrate, multiple signal pins arranged at an inner side of the array substrate, where each of the signal pins corresponds to one of the driving lines or one of the sensing lines, and multiple conductive structures. The conductive structures are arranged between the driving lines and the signal pins or between the sensing lines and the signal pins. Each conductive structure includes an end electrically connecting a driving line or a sensing line to a corresponding signal pin, and an opposite end electrically connected to a corresponding touch signal transmission line.
Abstract:
A liquid crystal display device is disclosed. The device includes data lines, gate lines, and common lines in parallel with the gate lines. The device also includes at least one dummy gate line in parallel with the gate lines, gate line trigger circuits, and common line trigger circuits. One end of the last gate line is connected with the last gate line trigger circuit, one end of each of remaining gate lines is connected with a gate line trigger circuit corresponding to said each of remaining gate lines, and the other end of said each of the remaining gate lines is connected with a next gate line trigger circuit. The first common line trigger circuit is connected with one dummy gate line, and each of remaining common line trigger circuits is connected with one or more preceding gate line trigger circuits.
Abstract:
A pixel circuit for an organic light emitting display includes first, second, third, fourth, fifth, and sixth MOS transistors, a first capacitor, and an organic light emitting diode. During a initialization stage, the sixth MOS transistor is turned on, and a reference voltage is transmitted to the gate electrode of the second MOS transistor. During a data-writing stage, the first MOS transistor is turned on and a data signal is transmitted to the first terminal of the first capacitor, the fourth MOS transistor is turned on and the other MOS transistors are turned off. During a light emitting stage, the fifth MOS transistor is turned on and the voltage at the gate of the second MOS transistor is based on the data signal. As a result, the third MOS transistor generates a drive current based on the data signal.
Abstract:
An inverter is disclosed. The disclosed inverter includes first, second, third, and fourth transistors, where each of the first, second, third, and fourth transistors is a P-type thin film transistor. The inverter also includes a first capacitor. The inverter allows for wide voltage output swing performance and low power consumption.