Abstract:
An array substrate, a display panel, and a fabrication method of the array-substrate are provided. The array substrate comprises a first thin film transistor including a first metal oxide thin, film transistor and disposed in a display region, a second thin film transistor including an amorphous silicon thin film transistor and disposed in a peripheral circuit region; and a third thin film transistor including a second metal oxide thin film transistor and disposed in the peripheral circuit region. A first insulating layer is disposed between a first metal oxide semiconductor layer and a first gate electrode, and a second insulating layer is disposed above the first gate electrode, a second gate electrode, and the first metal oxide semiconductor layer. The amorphous silicon semiconductor layer, a first source electrode, a first drain electrode, a second source electrode, a second drain electrode are disposed above the second insulating layer.
Abstract:
A display panel and a display device are disclosed. Each of pixels in the display panel includes a pixel area; a switch element located near an intersection of a data line and a scan line; a pixel electrode electrically connected to the switch element; and a common electrode located on the first substrate. The common electrode comprises first common electrodes superposing data lines or scan lines and having the same first width; and second common electrodes overlapping with respective pixel areas and having the same second width, the first width is the same as the second width. Alternatively, the common electrode comprises first slits, which have the same first slit width, located above data lines and scan lines, and second slits, which have the same second slit width and are located in respective pixel areas. The first slit width is the same as the second slit width.
Abstract:
An array substrate, a display panel, and a fabrication method of the array substrate are provided. The array substrate comprises a first thin film transistor including a metal oxide thin film transistor, and a second thin film transistor including an amorphous silicon thin film transistor. The first thin film transistor and the second thin film transistor are disposed above a substrate. The first thin film transistor is located in a display region of the array substrate, and the second thin film transistor is located in a peripheral circuit region of the array substrate.
Abstract:
The disclosure provides a display panel, an array substrate and a fabrication method thereof. The fabrication method of the array substrate includes forming a plurality of first thin film transistors and a plurality of second thin film transistors on the first substrate. The etch stopper layer of the second thin film transistor is different from an etch stopper layer of the first thin film transistor, and a threshold voltage of the second thin film transistor is higher than a threshold voltage of the first thin film transistor. By using the disclosed thin film transistors to form the gate driving circuit, the second thin film transistor with a high threshold voltage can be used as the driving signal outputting transistor. The abnormal multi-pulse of the gate driving circuit and the display panel caused by the low threshold voltage of the second thin film transistors may be therefore avoided.
Abstract:
An array substrate, display panel, display apparatus, and method for manufacturing the array substrate are provided. Array substrate includes pixel driving circuit and peripheral driving circuit. Array substrate further includes a plurality of thin film transistors including first type of thin film transistor electrically connected into peripheral driving circuit for outputting driving signal and second type of thin film transistor connected to peripheral driving circuit for outputting scanning signal. The thin film transistor includes an active layer of oxide semiconductor including at least one sub-layer. Compared with second type of thin film transistor, active layer of first type of thin film transistor has more sub-layers, and thickness of active layer of first type of thin film transistor is larger. Each sub-layer of the active layer of the second type of thin film transistor is in a same layer as the active layer of the first type of thin film transistor.
Abstract:
A driving method for a touch screen is disclosed. The touch screen includes a display panel, a touch panel, and a control circuit. Each of a plurality of display cycles includes at least two first time sequences and at least two second time sequences. The method includes, during each of the first time sequences, generating a plurality of scanning control signals for a display scanning line driving circuit, and, in response to the scanning control signals, delivering a plurality of scanning signals to different display scanning lines. The method also includes, during each of the second time sequences, generating a plurality of scanning control signals for the touch scanning line driving circuit, and, in response to the scanning control signals for the touch scanning line driving circuit, sequentially delivering scanning signals to all of the touch scanning lines of the touch panel.
Abstract:
A pixel structure includes a plurality of red sub-pixels, white sub-pixels, blue sub-pixels and green sub-pixels, which are arranged to form a plurality of first sub-pixel cells and second sub-pixel cells. The first and second sub-pixel cells may be arranged to form a plurality of pixel cells. The pixel cells may be arranged in the vertical direction repeatedly to form a plurality of pixel array cells. The pixel array cells may be arranged in the horizontal direction repeatedly to form a plurality of pixel arrays. The pixel structure further includes a supplement pixel array disposed in the pixel arrays according to a preset mode and configured to supplement polarity inversion in the pixel structure. The sub-pixels with a same color in a same row in a same signal frame may not have a same polarity, thereby reducing flicker and horizontal crosstalk of images and improving the image display quality.
Abstract:
A display panel, a method for manufacturing the display panel, and a display device including the display panel are provided. The display panel includes: a thin film transistor array layer, and a light-emitting function layer at a side of the thin film transistor array layer. The thin film transistor array layer includes a planarization layer, an electrode layer, a first insulation layer, an active layer and a buffer layer. The electrode layer includes at least one first electrode and second electrode, and each first electrode includes a connection portion and an electrode portion which are connected to each other. The light-emitting function layer includes first contact electrodes and light-emitting elements. Heat generated by the light-emitting function layer is conducted to electrode portion of the first electrode through the connection portion of the first electrode and is uniformly distributed on the connection portion and the electrode portion.
Abstract:
A color filter substrate is disclosed. The color filter substrate includes a glass substrate, and an RGB color filter layer. The RGB color filter layer includes a plurality of optical filter columns, and each optical filter column includes a plurality of optical filter units in two colors. In addition, adjacent optical filter columns form an optical filter group, optical filter units of one of the colors in each optical filter group are arranged in a zigzag pattern, optical filter units arranged in the zigzag pattern are of different colors in adjacent optical filter groups, and the optical filter units are rectangular.
Abstract:
A touch display panel includes a color film (CF) substrate and a TFT substrate disposed opposite to each other, a liquid crystal layer disposed between the CF substrate and the TFT substrate. A common electrode having a comb-shaped structure and/or a pixel electrode having a comb-shaped structure are disposed on the TFT substrate close to the liquid crystal layer. The touch display panel further includes a touch layer disposed on the CF substrate close to the liquid crystal layer and having a driving line and a detecting line insulated from each other. The driving line and/or the detecting line have a comb-shaped structure that is at least partially misaligned with respect to the comb-shaped structure of the common electrode and/or the comb-shaped structure of the pixel electrode.