摘要:
A method and apparatus for selecting or reselecting a home Node-B (HNB), (i.e., a closed subscriber group (CSG) cell), among cells having colliding physical layer signals are disclosed. Once the identity (ID) of an HNB is determined, measurements needed to support cell selection or reselection are performed. A broadcast channel that broadcasts an HNB ID is detected and synchronized to, and information obtained from the broadcast channel is forwarded to a non-access stratum (NAS). The broadcasted HNB ID is checked against an HNB white-list provided by the NAS to determine whether the HNB is suitable for a wireless transmit/receive unit (WTRU). The WTRU selects the HNB to camp on, or changes from a cell currently serving the WTRU to the HNB if it is determined to be more suitable than the current serving cell.
摘要:
A method and apparatus for selecting or reselecting a home Node-B (HNB), (i.e., a closed subscriber group (CSG) cell), among cells having colliding physical layer signals are disclosed. Once the identity (ID) of an HNB is determined, measurements needed to support cell selection or reselection are performed. A broadcast channel that broadcasts an HNB ID is detected and synchronized to, and information obtained from the broadcast channel is forwarded to a non-access stratum (NAS). The broadcasted HNB ID is checked against an HNB white-list provided by the NAS to determine whether the HNB is suitable for a wireless transmit/receive unit (WTRU). The WTRU selects the HNB to camp on, or changes from a cell currently serving the WTRU to the HNB if it is determined to be more suitable than the current serving cell.
摘要:
Embodiments contemplate methods, systems, and apparatuses for interference measurement in a wireless communication network, including wireless communication networks the employ MIMO in uplink and/or downlink communication. Embodiments contemplate identifying one or more interference measurement resource elements that may be received from one or more transmission points. Embodiments also contemplate performing interference measurement estimation based at least in part on the identified one or more interference measurement resource elements. Channel state information (CSI) perhaps in the form of reports may be generated based at least in part on the one or more interference measurement estimation. Embodiments also contemplate that the CSI report may be transmitted to one or more nodes. In some embodiments, the one or more interference measurement resource elements may be received as part of a set of resource elements.
摘要:
Embodiments contemplate methods, systems, and apparatuses for interference measurement in a wireless communication network, including wireless communication networks the employ MIMO in uplink and/or downlink communication. Embodiments contemplate identifying one or more interference measurement resource elements that may be received from one or more transmission points. Embodiments also contemplate performing interference measurement estimation based at least in part on the identified one or more interference measurement resource elements. Channel state information (CSI) perhaps in the form of reports may be generated based at least in part on the one or more interference measurement estimation. Embodiments also contemplate that the CSI report may be transmitted to one or more nodes. In some embodiments, the one or more interference measurement resource elements may be received as part of a set of resource elements.
摘要:
Methods and systems for sending and receiving an enhanced downlink control channel are disclosed. The method may include receiving control channel information via an enhanced control channel. The method may also include using the control channel information to receive a shared channel. The method may include detecting the presence of the enhanced control channel in a given subframe. The enhanced control channel may be transmitted over multiple antenna ports. For example, code divisional multiplexing and de-multiplexing and the use of common and UE-specific reference signals may be utilized. New control channel elements may be defined, and enhanced control channel state information (CSI) feedback may be utilized. The presence or absence of legacy control channels may affect the demodulation and or decoding methods. The method may be implemented at a WTRU.
摘要:
A method optimizes a selection of primary synchronization channel (P-SCH) sequences from an available set of P-SCH indices for a dedicated Multimedia Broadcast/Multicast Service (MBMS). The criteria for selecting P-SCH indices include coprimeness, frequency offset sensitivity, multipath sensitivity, cross-correlation property in the time domain, auto-correlation property in the time domain and computation complexity at the receiver.
摘要:
Techniques for sending hybrid automatic repeat request (HARQ) feedback for stransmissions received via a plurality of aggregated component carriers are disclosed. A wireless transmit/receive unit (WTRU) receive a plurality of codewords via a plurality of component carriers and decodes the codewords. The component carriers are grouped into a plurality of groups, and the WTRU may generate a bundled positive/negative acknowledgement (ACK/NACK) for each group of component carriers. The WTRU may be assigned a plurality of uplink control channel resources and may implement a channel selection scheme for indicating the ACK/NACKs. The WTRU selects one of the uplink control channel resources, and sets the HARQ feedback based the ACK/NACKs or bundled ACK/NACKs in a way that a different uplink control channel resource is selected and HARQ feedback bits are set differently based on the ACK/NACKs or bundled ACK/NACKs. Each physical uplink control channel (PUCCHs) may be mapped to a particular antenna.
摘要:
A method and apparatus are described for allocating resources for an enhanced physical hybrid automatic repeat request (HARQ) channel (E-PHICH). A subset of an enhanced physical downlink control channel (E-PDCCH) may be allocated for use by the E-PHICH. The E-PDCCH may be defined by at least one of enhanced resource element groups (eREGs) and enhanced control channel elements (eCCEs). Each eCCE may be formed by grouping a plurality of eREGs. Each eREG may contain at least one resource element (RE). Alternatively, a subset of eREGs may be allocated as E-PHICH resources. E-PDCCH physical resource block (PRB) pairs may be selected as a resource for the E-PHICH. An indication of the number of the eCCEs may be broadcast to a wireless transmit/receive unit (WTRU).
摘要:
Methods and systems for transmitting uplink control information and feedback are disclosed for carrier aggregation systems. A user equipment device may be configured to transmit uplink control information and other feedback for several downlink component carriers using one or more uplink component carriers. The user equipment device may be configured to transmit such data using a physical uplink control channel rather than a physical uplink shared channel. The user equipment device may be configured to determine the uplink control information and feedback data that is to be transmitted, the physical uplink control channel resources to be used to transmit the uplink control information and feedback data, and how the uplink control information and feedback data may be transmitted over the physical uplink control channel.
摘要:
Methods and apparatus for multiple-input multiple-output (MIMO) transmissions are disclosed. A base station may precode wireless transmit/receive unit (WTRU)-specific reference signals and data that are transmitted to a WTRU using a randomly selected precoder. The precoder may be selected based on a predefined precoder selection sequence or by the base station. A different precoder may be applied to different resource blocks (RBs). In addition, a large delay cyclic delay diversity (CDD) or discrete Fourier transform (DFT) spreading may be applied on the WTRU-specific reference signals and the data. For heterogeneous deployed antennas, spatial diversity gain is achieved by dynamically scheduling resources between transmission points. A hopping scheme may be applied across the transmission points as the resources are dynamically partitioned between the transmission points. A different randomly selected precoder may be applied to each RB transmitted from a different transmission point.