摘要:
Described herein is a system that includes a location determiner component that receives a first geographic location of a personal computing device of a first individual, wherein the first geographic location is indicative of a current geographic location of the first individual. The system also includes an estimator component that receives a second geographic location that is different from the first geographic location. The estimator component determines an estimated time of arrival for the first individual at the second geographic location based at least in part upon the received first geographic location, wherein the estimator component outputs the estimated time of arrival to a second individual.
摘要:
A system and method for peer based localization system using radio technology, such as Bluetooth or Wi-Fi ad-hoc technology that enables mobile devices such as cell phones, smart phones, laptops, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, etc. to discover their physical location relative to one another. In addition, the peer based localization can use a plurality of radio technologies to increase the accuracy of the physical location estimates. Additionally or alternatively, the peer based localization technique can be combined with infrastructure based location techniques, such as triangulation, GPS, or infrastructure based Wi-Fi localization in order to transpose virtual coordinates into physical coordinates.
摘要:
A system and method for peer based localization system using radio technology, such as Bluetooth or Wi-Fi ad-hoc technology that enables mobile devices such as cell phones, smart phones, laptops, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, etc. to discover their physical location relative to one another. In addition, the peer based localization can use a plurality of radio technologies to increase the accuracy of the physical location estimates. Additionally or alternatively, the peer based localization technique can be combined with infrastructure based location techniques, such as triangulation, GPS, or infrastructure based Wi-Fi localization in order to transpose virtual coordinates into physical coordinates.
摘要:
A method to determine if a rogue device is connected to a specific wired network from dynamic host control protocol (DHCP) requests on the wired network. These DHCP requests are analyzed to determine the type of device issuing the request. Once the type of device has been determined, it can be checked against a list of authorized device types. If the device issuing the DHCP request is not an authorized device type, then it can be determined that the suspect device is a rogue that is connected to the specific wired network. Additionally, even if the system of the present invention determines that it is an authorized device type, if the device is not one of the few authorized devices of this type, e.g. because its MAC address is not recognized as that of one of the authorized devices, the system can flag the suspect as a rogue.
摘要:
A framework for wireless network management applications in an enterprise environment using existing general purpose computing devices is presented. At least one of the devices is configured with a wireless adapter and is used as an AirMonitor to monitor one or more wireless networks. Other devices are configured as LandMonitors to monitor traffic on a wired network in the enterprise environment. At least one inference engine uses the LandMonitors and AirMonitors by assigning them monitoring tasks. Data from the monitoring tasks are stored in a database. Analysis of the data that is computationally intensive is generally performed by the inference engines. Wireless network management applications use the framework by installing and running application-specific components (e.g., filters) on the AirMonitors, LandMonitors, and/or inference engines.
摘要:
Wireless adapters are installed on one or more general purpose computing devices and are connected via a wireless network in an enterprise environment. The adapters are densely deployed at known locations throughout the environment and are configured as air monitors. The air monitors monitor wireless signals transmitted between transceiver devices and access points and records information about these signals. One or more analysis or inference engines may be deployed to analyze the signals received from the air monitors to obtain optimum performance and connectivity information about the wireless network.
摘要:
A framework for wireless network management applications in an enterprise environment using existing general purpose computing devices is presented. At least one of the devices is configured with a wireless adapter and is used as an AirMonitor to monitor one or more wireless networks. Other devices are configured as LandMonitors to monitor traffic on a wired network in the enterprise environment. At least one inference engine uses the LandMonitors and AirMonitors by assigning them monitoring tasks. Data from the monitoring tasks are stored in a database. Analysis of the data that is computationally intensive is generally performed by the inference engines. Wireless network management applications use the framework by installing and running application-specific components (e.g., filters) on the AirMonitors, LandMonitors, and/or inference engines.
摘要:
Techniques for increasing the battery life on a mobile device by decreasing the energy consumption of the mobile device's wireless fidelity (Wi-Fi) interface are described. In one embodiment, the mobile device's Wi-Fi interface is automatically disabled when the device is not engaged. When the device receives a wake up call from a server via its Cellular interface, the Wi-Fi interface is enabled if the device answers the wake up call and the Wi-Fi interface is available. Using its Wi-Fi interface, the mobile device then connects to an IP-based network via a Wi-Fi access point.
摘要:
Techniques for increasing the battery life on a mobile device by decreasing the energy consumption of the mobile device's wireless fidelity (Wi-Fi) interface are described. In one embodiment, the mobile device's Wi-Fi interface is automatically disabled when the device is not engaged in a voice over internet protocol (VoIP) call via the Wi-Fi interface. When a VoIP call is initiated on the device, or when the device receives a wake up call from a server via its Cellular interface, the Wi-Fi interface is automatically enabled. Using its Wi-Fi interface, the mobile device then connects to an IP-based network via a Wi-Fi access point. The server then initiates a direct call, wherein VoIP technology is used by the mobile device, between the mobile device and a VoIP calling device.
摘要:
Wireless adapters are installed on one or more general purpose computing devices and are connected via a network in an enterprise environment. The adapters are densely deployed at known locations throughout the environment and are configured as air monitors. The air monitors monitor signals transmitted by one or more transceiver devices and records information about these signals. One or more analysis or inference engines may be deployed to obtain the recorded signal information and the air monitor locations to determine a location of the one or more wireless transceivers devices deployed in the environment.