Abstract:
A method of treating a subterranean formation via well bore may include introducing a plurality of particles into the subterranean formation via the well bore, each particle having a substrate and a layer of cement on the substrate. The cement may be in a state of suspended hydration and the method may include introducing moisture to the subterranean formation via the well bore. The method may also include allowing the particles and the moisture to contact one another. Contact between the particles and the moisture may cause the cement to move from a state of suspended hydration to a state of secondary hydration.
Abstract:
Migration of formation solids in a wellbore is restrained by feeding a slurry, comprising water, a viscosifier, and a concentration of cement clinker particles, into the wellbore, and hydrating the clinker particles in the wellbore. The clinker particles are kept in suspension during the hydrating, and upon completion of the hydrating the hydrated clinker particles form a hardened cement consisting of a permeable structure of interconnected hydrated clinker particles. A layer of degradable lost circulation material (LCM) may be employed to separate the slurry with clinker particles from the formation surrounding the wellbore during hydrating of the clinker particles.
Abstract:
An asphalt composition comprising aggregate, bitumen, sulphur and resin-based binder, wherein the resin-based binder comprises a thermoplastic hydrocarbon resin and a diluent. Methods of preparing asphalt compositions and asphalt pavements are also disclosed.
Abstract:
The present invention relates to an electric energy storage device, in particular a battery, at least comprising: —an anode comprising a divalent metal selected from magnesium, calcium, beryllium and zinc or a combination thereof or an alloy comprising at least one of these metals; —a cathode comprising elemental sulphur, or a sulphur-containing organosilane compound, or a mixture of sulphur-containing organosilane compounds, or a mixture of sulphur and sulphur-containing organosilane compounds grafted on the surface of the cathode; and—an electrolyte placed between the anode and the cathode; wherein the cathode comprises a current collector surface that has been at least partly modified by grafting the sulphur-containing organosilane compound or a mixture of sulphur-containing organosilane compounds thereon.
Abstract:
A method of treating a subterranean formation may include preparing a mortar slurry, injecting the mortar slurry into the subterranean formation at a pressure sufficient to create a fracture in the subterranean formation, and allowing the mortar slurry to set, forming a mortar in the fracture. The mortar slurry may be designed to form a pervious mortar, to crack under fracture closure pressure, or both.
Abstract:
The present invention provides an electric energy storage device, in particular a battery, at least comprising:—an anode comprising an alkali metal selected from lithium and sodium or a combination thereof;—a cathode comprising a sulphur-containing organosilane compound or a mixture of sulphur-containing organosilane compounds; and—an electrolyte placed between the anode and the cathode; wherein the cathode comprises a current collector surface that has been at least partly modified by grafting the sulphur-containing organosilane compound or a mixture of sulphur-containing organosilane compounds thereon.
Abstract:
A method of treating a subterranean formation may include preparing a mortar slurry, injecting the mortar slurry into the subterranean formation at a pressure sufficient to create a fracture in the subterranean formation, allowing the mortar slurry to set, forming a mortar in the fracture, and providing a pulse of pressure sufficient to reopen the fracture and thereby provide cracks in the set mortar. The mortar slurry may be designed to form a pervious mortar, to crack under fracture closure pressure, or both.
Abstract:
The present invention provides a microcrystalline wax having a needle penetration according to ASTM D-1321 at 25° C. of more than 1, a crystallinity according to XRD between 5 and 70%, an initial boiling point of less than 500° C., a congealing point in the range of from 60 to 120° C., an oil content according to ASTM D-721 of more than 2 wt. %, wherein the microcrystalline wax has a fraction up to C40 having at least 5 wt % of multiple methyl-branched paraffins as determined with GC×GC.
Abstract:
The present invention provides a process for preparing sulfur-containing branched organosilane polymers comprising: reacting sulfur with a vinyl silane compound in a solvent and in the presence of a catalytic amount of an accelerator at an elevated temperature of at least 40° C. The process, and the organosilane polymers obtained by using the process, are very suitable for application in battery technologies.
Abstract:
A process to prepare a solid cement composition; includes adding a meltable compound to an aqueous slurry of cement and; mixing until a homogeneous dispersion is obtained. The dispersion is placed in a mould, where the dispersion is set by hydration. Part of the meltable compound is melted at a temperature range of which the maximum is above the melting point of the meltable compound and a minimum below the melting point of the meltable compound. A material, either still as a dispersion or an already setting cement is exposed to heat development or a temperature gradient such that the temperature is at least above the congealing point of the meltable compound to obtain a solid cement composition.